В тетраэдре DABC все ребра равны a. Точки А1, В1, С1-середины ребер DA, DВ и DC соответственно. а) Постройте сечение тетраэдра ,проходящее через точку С1 параллельно плоскости ВА1С. б) найдите площадь построенного сечения.

В тетраэдре DABC все ребра равны a. Точки А1, В1, С1-середины ребер DA, DВ и DC соответственно. а) Постройте сечение тетраэдра ,проходящее через точку С1 параллельно плоскости ВА1С. б) найдите площадь построенного сечения.
Гость
Ответ(ы) на вопрос:
Гость
Ну, Сечение ВА1С думаю не проблема намалевать. Сечение тетраэдра ,проходящее через точку С1 параллельно плоскости ВА1С - это будет плоскость C1B1A2, A2 - середина отрезка А1D. Площадь C1B1A2 равна четверти площади ВА1С (Подобные треугольники). Площадь ВА1С найдем по формуле Герона (S=sqrt{p(p-a)(p-b)(p-c)}. где p — полупериметр треугольника), для этого нужно знать все стороны. ВС известна - а, а А1В=А1С=a*sqrt(3))/2 (высота равностороннего треугольника)/ p=(a+2*a*sqrt(3)/2)/2=(a+a*sqrt(3))/2 S (C1B1A2) = S (ВА1С)/4 = (sqrt{(a+a*sqrt(3))/2*((a+a*sqrt(3))/2-a)((a+a*sqrt(3))/2-(a*sqrt(3))/2)((a+a*sqrt(3))/2-(a*sqrt(3))/2)}/4=sqrt{(a^4)/8)/4=(а^2)/4sqrt(8)=(a^2)/8sqrt(2) Все.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы