В трапеции abcd основание ad в 3 раза больше основания bc. Диагонали трапеции пересекаются в точке O. Средняя линия трапеции пересекает диагонали в точках m и n. Найти отношение площади треугольника MON к площади трапеции ABCD.

В трапеции abcd основание ad в 3 раза больше основания bc. Диагонали трапеции пересекаются в точке O. Средняя линия трапеции пересекает диагонали в точках m и n. Найти отношение площади треугольника MON к площади трапеции ABCD.
Гость
Ответ(ы) на вопрос:
Гость
здесь ровно 2 трюка. 1. MN является частью средней линии, длинаа её (a + b)/2, а куски этой средней линии между диагональю и боковой стороной равны b/2 (b - меньшее основание), поскольку сами являются средними линиями в треугольниках, образованных боковой стороной, диагональю и малым основнием. Поэтому MN = (a + b)/2 - 2*b/2 = (a - b)/2 2. Проведем из точки С прямую II AC, до пересечения с продолжением большего основания AD за точку D. Пусть это точка Е. Тогда треугольник АСЕ имеет площадь, равную площади трапеции (у АСЕ основание АЕ = (a + b), а высота у них общая - расстояние от С до AD) и - вот оно, решение:))) - АСЕ подобен МON (ну, например, у них все стороны параллельны :)) Поэтому можно сразу записать ответ Smon/Sabcd = ((a/2-b/2)/(a+b))^2 =(1/4)*((a/b - 1)/(a/b + 1))^2 =  = (1/4)*((3 - 1)/(3 + 1))^2 = 1/16;  
Не нашли ответ?
Ответить на вопрос
Похожие вопросы