В трапеции ABCD с основаниями AD и ВС биссектриса угла BAD проходит через середину М стороны CD. Известно, что АВ = 5, АМ = 4. Найдите длину отрезка ВМ.

В трапеции ABCD с основаниями AD и ВС биссектриса угла BAD проходит через середину М стороны CD. Известно, что АВ = 5, АМ = 4. Найдите длину отрезка ВМ.
Гость
Ответ(ы) на вопрос:
Гость
Пусть продолжение AM за точку M пересекает BC (точнее, продолжение этого отрезка за точку С) в точке K. Тогда 1) Треугольник ABK - равнобедренный, так как ∠BKA = ∠KAD = ∠KAB; то есть BK = AB = 5; 2) AM = MK; тут можно сослаться на теорему Фалеса, а можно просто сказать, что ΔAMD = ΔKMC;  поскольку есть пара равных сторон MD = MC и углы при равных сторонах тоже равны (из за параллельности оснований трапеции). То есть BM - медиана к основанию у равнобедренного треугольника ABK. Поэтому BM перпендикулярно AM, и BM = 3; (получился "египетский" треугольник).
Не нашли ответ?
Ответить на вопрос
Похожие вопросы