В треугольнике ABC  ∠ A = 3 ∠ C. Точка D на стороне BC обладает тем свойством, что  ∠ ADC = 2 ∠ C. Доказать, что AB + AD = BC.

В треугольнике ABC  ∠ A = 3 ∠ C. Точка D на стороне BC обладает тем свойством, что  ∠ ADC = 2 ∠ C. Доказать, что AB + AD = BC.
Гость
Ответ(ы) на вопрос:
Гость
Продолжим отрезок BA за точку A и отложим на нем отрезок AE = AD. Заметим, что  ∠ EAC = 180 –  ∠ BAC = 180 – 3 ∠ C, поэтому треугольники ADC и AEC равны (по сторонам AC, AD = AE и углу между ними). Отсюда находим углы треугольника AEC:  ∠ AEC =  ∠ ADC = 2 ∠ C,  ∠ ACE =  ∠ C, т.е.  ∠ BCE = 2 ∠ C, поэтому треугольник BEC равнобедренный. Таким образом, AB + AD = AB + AE = BE = BC
Не нашли ответ?
Ответить на вопрос
Похожие вопросы