В треугольнике ABC известно, что AB=15, BC=14, AC=13, а медиана AA 1 пересекает биссектрису BB1 в точке P найдите площадь A1PB1C

В треугольнике ABC известно, что AB=15, BC=14, AC=13, а медиана AA 1 пересекает биссектрису BB1 в точке P найдите площадь A1PB1C
Гость
Ответ(ы) на вопрос:
Гость
Площадь треугольника АВС по формуле Герона равна: Sabc=√[p(p-a)(p-b)(p-c)], где р - полупериметр = (15+14+13):2=21. Тогда Sabc=√[21*6*7*8]=84. Площадь треугольника АВА1 равна:  Saba1=42, так как АА1 - медиана, которая делит треугольник АВС на два равновеликих. ВР - биссектриса и делит сторону АА1 в отношении АР/РА1=АВ/ВА1=15/7 (свойство). И в этом же отношении делится площадь треугольника АВА1 (свойство). Значит площадь треугольника ВРА1=42*(7/22)=84*7/44. Также и в треугольнике АВС биссектриса ВВ1 делит сторону АС в отношении АВ1/В1С=15/14 и Sabb1/Sbb1c=15/14. Значит Sabb1=(15/29)*Sabc=(15/29)*84. Тогда Sa1pb1c=Sabc-Sabb1-Sbpa1 или Sa1pb1c=84-(15/29)*84-84*(7/44) или Sa1pb1c=84(1-15/29-7/44)=84*413/1276≈27,188≈27,2.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы