Вершины четырехугольника ABCDявляются серединами сторончетырехугольника, диагоналикоторого равны 6 дм ипересекаются под углом 60°.Вычислите площадьчетырехугольника ABCD.
Вершины четырехугольника ABCD
являются серединами сторон
четырехугольника, диагонали
которого равны 6 дм и
пересекаются под углом 60°.
Вычислите площадь
четырехугольника ABCD.
Ответ(ы) на вопрос:
Вершины четырехугольника ABCD
являются серединами сторон
четырехугольника abcd
так как d1=d2, значит abcd -прямоугольник, следовательно АВСД тоже прям-к
S(abcd) = 1/2 *d1*d2*sin60 =1/2 *6*6*sin60=9√3
из подобия четырехугольников следует
S(ABCD)/S(abcd) = (1/2)^2 = 1/4
S(ABCD) = 1
Не нашли ответ?
Похожие вопросы