Вычислить. sin2a если sina=-12/13 , п меньше a меньше 3п/2

Вычислить. sin2a если sina=-12/13 , п < a < 3п/2
Гость
Ответ(ы) на вопрос:
Гость
[latex]\sin2 \alpha =2\sin \alpha \cos \alpha [/latex] косинус альфа находим из основного тригонометрического тождества [latex]\sin^2 \alpha +\cos^2 \alpha =1\\\\\cos \alpha =\pm \sqrt{1-\sin^2 \alpha } [/latex] так как угол альфа находится в 3 четверти, косинус отрицательный [latex]\cos \alpha =- \sqrt{1-\sin^2 \alpha } =- \sqrt{1- \dfrac{144}{169} } =- \dfrac{5}{13} \\\\\\\sin2 \alpha =2\cdot \dfrac{12}{13} \cdot \dfrac{5}{13} = \dfrac{120}{169} [/latex]
Не нашли ответ?
Ответить на вопрос
Похожие вопросы