Высота AH ромба АБСД делит СД на отрезки DH=24 и CH=1 найдите высоту ромба
Высота AH ромба АБСД делит СД на отрезки DH=24 и CH=1 найдите высоту ромба
Ответ(ы) на вопрос:
Гость
Т.к АБСД ромб, то все его стороны равны.
Найдём сторону ДС :
ДН + СН = 24+1 = 25
Теперь, рассмотрим ∆АDH, образованный сторонами АД, ДН и высотой АН
Т. к АН - высота, то она перпендикулярна стороне ДС ( и соответственно ДН). Значит ∆АДН прямоугольный.
В данном треугольнике:
АН и ДН - кареты
АД - гипотенуза
Что бы найти АН, нужно по вычислить её по теореме Пифагора из ∆ АДН :
АН^2 = АД^2 - ДН^2
АД = ДС = 25
ДН = 24
АН^2 = 25^2 - 24^2 = 625-576 =49
АН = √49 = 7
Ответ:
Высота АН = 7
Не нашли ответ?
Похожие вопросы