Высота правильной треугольной пирамиды равна а(корень из 3), радиус окружности, описанной около ее основания, 2а.найдите: а) апофему пирамиды б)угол между боковой гранью и основанием в)площадь боковой повверхности

Высота правильной треугольной пирамиды равна а(корень из 3), радиус окружности, описанной около ее основания, 2а.найдите: а) апофему пирамиды б)угол между боковой гранью и основанием в)площадь боковой повверхности
Гость
Ответ(ы) на вопрос:
Гость
АВСЕ - пирамида с вершиной Е. В основании лежит правильный тр-ник, для которого радиус описанной окружности в два раза больше радиуса описанной окружности. r=R/2.  ОК=ОВ/2=2а/2=а. ЕК - апофема на сторону АС. В тр-ке ЕКО ЕК²=ЕО²+ОК²=3а²+а²=4а², ЕК=2а - апофема. б) ЕК/ОК=2а/а=2. В прямоугольном треугольнике ЕОК гипотенуза ЕК вдвое больше катета ОК, значит ∠КЕО=30°, следовательно ∠ЕКО=60° - угол между боковой гранью и основанием. в) Площадь боковой поверхности: Sб=Р·l/2, где Р - периметр основания, l - апофема.  R=AB/√3 ⇒ AB=R√3=2a√3. P=3AB=6a√3. Sб=6a√3·2a/2=6a²√3 (ед²).
Не нашли ответ?
Ответить на вопрос
Похожие вопросы