Высота, проведенная к основанию равнобедренного треугольника равна 9 см, а само основание - 24 см. Найдите радиус вписанной в треугольник окружности и радиус описанной вокруг треугольника окружности. P.S. Напишите, пожалуйста, ...
Высота, проведенная к основанию равнобедренного треугольника равна 9 см, а само основание - 24 см. Найдите радиус вписанной в треугольник окружности и радиус описанной вокруг треугольника окружности. P.S. Напишите, пожалуйста, подробное решение.
Ответ(ы) на вопрос:
Высота, проведенная к основанию равнобедренного треугольника, является и медианой, т.е. делит основание на две равные части. В каждой из них по 24/2 = 12 см. Боковая сторона этого треугольника находится из теоремы Пифагора: Квадрат боковой стороны равен 12^2 + 9^2 = 144+81 = 225, значит, боковая сторона треугольника равна 15. Произведение всех его сторон равно 15*15*24 = 5400 Площадь треугольника равна половине произведения высоты на основание, т.е. 9*24/2 = 108. Радиус описанной окружности равен отношению произведения всех сторон к четырем площадям, т.е. 5400/(4*108) = 12,5 см. Чтобы найти радиус вписанной в треугольник окружности, нужно вспомнить теорему о равенстве отрезков касательных, проведенных из одной точки. Боковая сторона делится точкой касания в отношении 1:4, следовательно, центр вписанной окружности будет делить высоту в отношении 5/4, считая от вершины. Радиус вписанной окружности равен 4. Ответ: R = 12,5 см; r = 4 см
Не нашли ответ?
Похожие вопросы