X⁴-3x³+3x²-3x+2 больше 0 помогите решить методом интервала!

X⁴-3x³+3x²-3x+2>0 помогите решить методом интервала!
Гость
Ответ(ы) на вопрос:
Гость
Угадываем корень x=1; чтобы не делить столбиком, сгруппируем: (x^4-x^3)-2(x^3-x^2)+(x^2-x)-2(x-1)>0; x^3(x-1)-2x^2(x-1)+x(x-1)-2(x-1)>0; (x^3-2x^2+x-2)(x-1)>0; в первой скобке угадываем корень x=2; группируем: (x^2(x-2)+(x-2))(x-1)>0; (x^2+1)(x-2)(x-1)>0. Первая скобка всегда больше нуля; отбрасываем ее. Остается (x-2)(x-1)>0. Наносим на ось нули левой части - точки 1 и 2; числовая прямая оказалась разбита ни три промежутка. Беря в каждом промежутке по точке, выбираем те из них, в котором неравенство выполнено: x∈(-∞;1)∪(2;+∞) - это ответ в задаче. Замечание. Выбор нужных промежутков в подобных задачах можно (и нужно) автоматизировать. Но это уже совсем другая история
Не нашли ответ?
Ответить на вопрос
Похожие вопросы