ЗАДАЧА 1 Основа рівнобедреного трикутника дорівнює 24см, а проведена до неї висота -16см. Знайдіть радіус кола, вписаного в трикутник. ЗАДАЧА 2 Діагональ, бічна сторона і більша основа рівнобедреної трапеції дорівнюють відповід...

ЗАДАЧА 1 Основа рівнобедреного трикутника дорівнює 24см, а проведена до неї висота -16см. Знайдіть радіус кола, вписаного в трикутник. ЗАДАЧА 2 Діагональ, бічна сторона і більша основа рівнобедреної трапеції дорівнюють відповідно 40см, 13 см і 51 см. Знайдіть радіус кола, описаного навколо трапеції.
Гость
Ответ(ы) на вопрос:
Гость
ЗАДАЧА 1 Основа рівнобедреного трикутника дорівнює 24см, а проведена до неї висота -16см. Знайдіть радіус кола, вписаного в трикутник. Решение: Боковая сторона нашего треугольника по Пифагору равна √(16²+12²) = √400 =20см. По формуле радиуса вписанной окружности имеем: r = b/2*√(2a-b)/(2a+b), где b - основание, а - боковая сторона. r= 24/2*√(40-24)/(40+24) = 6см. ЗАДАЧА 2 Діагональ, бічна сторона і більша основа рівнобедреної трапеції дорівнюють відповідно 40см, 13 см і 51 см. Знайдіть радіус кола, описаного навколо трапеції. Решение: Есть фрмулы радиуса описанной окружности трапеции по сторонам и диагонали: R = adc/4√p(p-a)(p-d)(p-c), где a - боковая сторона, d- диагональ, с - большее основание. p = (a+d+c)/2 = 52. R = 26520/(4*√52*39*12*1) = 6630/√24336 = 6630/156 = 42,5см.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы