Задача. 1. Цилиндр образован вращением прямоугольника вокруг стороны равной 8 дм, диагональ прямоугольника 17 дм. Найти полную поверхность и объём цилиндра. 2. Конус получен вращением прямоугольного треугольника вокруг катета, ...

Задача. 1. Цилиндр образован вращением прямоугольника вокруг стороны равной 8 дм, диагональ прямоугольника 17 дм. Найти полную поверхность и объём цилиндра. 2. Конус получен вращением прямоугольного треугольника вокруг катета, равного 20 см, гипотенуза треугольника 29 см. Найти объём и полную поверхность конуса. 3. Основание пирамиды - прямоугольник со сторонами 2 см 4√2 см. Все боковые ребра равны 5 см. Найти полную поверхность и объём пирамиды. Решите пожалуйста срочно..
Гость
Ответ(ы) на вопрос:
Гость
1. R=a=8 дм ; d =17 дм .⇒H =b =√(d² -a²) =√(17² -8²) =15 (дм). Sпол=2Sосн+Sбок=2πR²+2πR*H=2πR(R+H) =2π*8(8+15) =368π (дм²). V =πR²*H =π*8²*15 = 960π (дм³). ------- 2. R =a =20 см ;L=c =29 см. H=b =√(L²-R²) =√(c²-a²) =√(29²-20²)=21( см). V =(1/3)*πR²*H =(1/3)*π20²*21=2800π  (см³). Sпол=Sосн+Sбок=πR²+πR*L=πR(R+L) =π*20(20+29) =980π (см²). ------- 3. a=2 см , b=4√2 см , L₁=L₂ =L₃ =L₄ =L=5 см. --- Так как по условию задачи все боковые ребра равны, то высота пирамиды проходить через центр окружности описанной около основания ,т.е. через точку пересечения диагоналей прямоугольника. Диагональ основания d=√(a²+b²) =√(2²+(4√2)²) =√(4+32) =6 (см). Высота пирамиды H =√(L² -R²) =√(L² -(d/2)²) =√(5² -3²) =4  (см). V =(1/3)*Sосн *H =(1/3)*2*4√2 *4 =(32√2)/3 (см³). Sпол=Sосн+Sбок  (боковые грани равнобедренные треугольники). Sпол=ab +2*ah₁/2 +2*bh₂/2 =ab +ah₁ +bh₂ = ab +a√(L²-(a/2)²) +b√(L²-(b/2)²) =2*4√2 +2√(5²-1²) +4√2*√(5²-(2√2)²) = 8√2+4√6 +4√34 =4√2(2 +√3 + √17)  (см²) .
Не нашли ответ?
Ответить на вопрос
Похожие вопросы