Задана окружность с центром О и с хордой CD. Радиус OE проведен перпендикулярно хорде CD. Докажите,что хорды CE и DE равны.

Задана окружность с центром О и с хордой CD. Радиус OE проведен перпендикулярно хорде CD. Докажите,что хорды CE и DE равны.
Гость
Ответ(ы) на вопрос:
Гость
Т.к. CD хорда, а значит C и D точки окружности, а значит OC=OD, значит треугольник OCD равнобедренный, а значит перпендикуляр проведенный к хорде CD из O является высотой, а также медианой и биссектрисой. а значит угол СOE=EOD, следовательно треугольник СOE=OED по двум сторонам (OC=OD, OE общая) и углу между ними. А значит EC=ED
Не нашли ответ?
Ответить на вопрос
Похожие вопросы