Задание для Эйлен.1) Диагонали трапеции KLMN с основаниями LM и KN пересекаются в точке P. Найдите основания трапеции, если известно, что KP=15см, KM=21см, а средняя линия трапеции равна 14 см.2) Диагональ равнобедренной трапец...

Задание для Эйлен. 1) Диагонали трапеции KLMN с основаниями LM и KN пересекаются в точке P. Найдите основания трапеции, если известно, что KP=15см, KM=21см, а средняя линия трапеции равна 14 см. 2) Диагональ равнобедренной трапеции равна 8 дм и перпендикулярна боковой стороне. Средняя линия трапеции равна 6,4 дм. Найдите боковую сторону и меньшее основание  трапеции. 3) Из точки А окружности радиуса 8 см проведены две равные хорды AB и AC, образующие угол=60гр. Найдите расстояние от центра этой окружности до прямой BC. 4) На окружности с центром O лежит точка B. AB-хорда, AC-касательная, угол BAC=35гр. Найдите угол AOB 5) Из точки А, лежащей вне окружности, проведена касательная AB к окружности (B-точка касания. Известно, что AB=5, а расстояние от точки A до центра окружности равно 5√2. Найдите радиус окружности. 6) Из точки D к окружности с центром O проведены касательные DE и DF (Eи F-точки касания). Длина отрезка DE равна 8 см, а тангенс угла EDO равен 0,75. Найдите: а) длину окружности; б) площадь треугольника EDF. 7) Из точки М к окружности с центром O и радиусом 12 см проведены касательные MK и MN (K и N-точки касания). Найдите периметр треугольника MNK, если градусная мера дуги KN равна 120гр. 
Гость
Ответ(ы) на вопрос:
Гость
1)МР=КМ-КР=21-15=6. Средняя линия - это полусумма оснований, тогда сумма оснований - это средняя линия ×2. LМ+KN=28. Смотри рисунок. ΔLPM подобен ΔКРN по первому признаку (угол LРМ=углу КРN как вертикальные, углы MLN=LNK как внутренние накрест лежащие при параллельных LM и KL и секущей LN). Отсюда вытекает следующее: [latex] \frac{KP}{PM} = \frac{KN}{LM}; \frac{15}{6} = \frac{KN}{LM};15LM=6KN [/latex] KN=28-LM [latex]15LM=6(28-LM);21LM=168;LM=8[/latex] Тогда KN=28-8=20. Ответ: 8, 20. 3) Смотри второй рисунок. ОН - расстояние до ВС, являющееся перпендикуляром к ней. АВС - вписанный угол, опирающийся на ту же дугу, что и центральный ВОС ⇒ ВОС=2×60=120. Рассмотрим ΔВОС - равнобедренный (ВО=ОС=R). Угол ОВС=углу ОСВ=(180-120)/2=30 Рассмотрим прямоугольный ΔОНВ. Катет ОН противолежит углу в 30 градусов, а значит равен половине гипотенузы ОВ ( половине радиусу). ОН=8/2=4. Ответ: 4. 4) Третий рисунок. Радиус к касательной перпендикулярен ей, и угол ОАС=90 градусов. Угол ОАС=угол ВАС+угол ВАО, откуда ВАО=90-35=55. Треугольник АОВ - равнобедренный (ВО=АО=R), а значит угол АВО=углу ВАО. Искомый угол АОВ=180-55-55=70. Ответ: 70. 5) Сюда, оказывается, можно добавить только три рисунка, так что построй сама, он легкий. Радиус к касательной перпендикулярен ей, и угол АВО=90 градусов. Из прямоугольного тр-ка АВО найдем ВО (который является радиусом) по теореме Пифагора. [latex]BO= \sqrt{ AO^{2}- AB^{2} }= \sqrt{ (5 \sqrt{2}) ^{2}- 5^{2} }= \sqrt{50-25}= \sqrt{25} =5 [/latex] Ответ: 5. 6) В третьем вложении. Рассмотрим прямоугольный треугольник ДЕО. [latex]tgEDO= \frac{EO}{ED};EO=0,75*8=6 [/latex] Длина окружности 2пиR=2×3,14×6=37,68. Из тр-ка ДЕО найдем гипотенузу ДО. ДО²=ЕД²+ЕО²=64+36=100, ДО=10. sinЕДО=6/10=0,6. Рассмотрим прямоугольный тр-ик ЕДН. sin ЕДН=ЕН/ЕД=0,6, откуда ЕН=0,6×8=4,8. ЕF=2×EH=2×4,8=9,6 Все в том же тр-ке найдем ДН по теореме Пиф. ДН²=ЕД²-ЕН²=64-23,04=40,96; ДН=6,4. Площадь - это половина произведения высоты на основание, т. е. [latex] \frac{1}{2}*DH*EF= \frac{1}{2} *6,4*9,6=30,72[/latex] Ответ: 37,68; 30,72.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы