Задайте формулой линейную функцию, график которой параллелен прямой у=2х+11 и пересекается с графиком у=х-3 в точке, лежащей на оси ординат.

Задайте формулой линейную функцию, график которой параллелен прямой у=2х+11 и пересекается с графиком у=х-3 в точке, лежащей на оси ординат.
Гость
Ответ(ы) на вопрос:
Гость
1) Обозначим искомую линейную функцию у = kx +b. По условию её график параллелен прямой y=2x+11, следовательно угловые коэффициенты этих функций равны => k = 2 => искомая функция принимает вид у = 2x +b.  2) По условию график искомой функции пересекается с графиком y=x-3 в точке, лежащей на оси ординат, значит функции у = 2x +b, y=x-3 и ось ординат OY, которая задается формулой x = 0 пересекаются в одной точке.  Решаем систему:  у = 2x +b  y=x-3  x = 0  Получаем: b = - 3.  T.о.искомая функция имеет вид: у = 2x - 3
Не нашли ответ?
Ответить на вопрос
Похожие вопросы