Дипломная работа: Абстрактное отношение зависимости
Содержание
Введение. 3
§1.Определения и примеры.. 5
§2. Пространства зависимости. 12
§3. Транзитивность. 16
§4. Связь транзитивных отношений зависимости с операторами замыкания 23
§5. Матроиды.. 27
Список библиографии. 32
Введение
Целью квалификационной работы является изучение понятия отношения зависимости, рассмотрение отношения зависимости на различных множествах.
Поставленная цель предполагает решение следующих задач:
1. Изучить и дать определение понятию отношение зависимости.
2. Рассмотреть некоторые примеры отношения зависимости.
3. Сформулировать и доказать свойства и теоремы как для произвольных, так и для транзитивных пространств зависимости.
4. Рассмотреть теорему о связи транзитивного отношения зависимости и алгебраического оператора замыкания.
5. Изучить понятие матроида, привести примеры матроидов.
6. Рассмотреть жадный алгоритм и его связь с матроидами.
На основании поставленных целей и задач квалификационная работа разбивается на 5 параграфов.
В первом параграфе приведены основные определения и рассмотрены некоторые примеры отношения зависимости.
Во втором – рассматриваются произвольные пространства зависимости, их свойства и некоторые теоремы.
Третий – посвящен транзитивным и конечномерным пространствам зависимости. Здесь рассмотрены свойства транзитивных пространств зависимости и доказаны теоремы, которые подтверждают существования базиса и инвариантность размерности в любом конечномерном транзитивном пространстве зависимости.
В четвертом параграфе формулируются основные определения касающиеся оператора замыкания и рассмотрена теорема о представлении транзитивного отношения зависимости с помощью алгебраического оператора замыкания.
Пятый параграф посвящен матроидам, примерам матроидов и их применению при изучении теоретической основой анализа «жадных» алгоритмов.
Основной литературой при написании квалификационной работы стали монографии: Кона П. «Универсальная алгебра» [2] и Куроша А. Г. «Курс высшей алгебры» [3].
§1.Определения и примеры
Определение 1.
Множество Z подмножеств множества A назовем отношением зависимости на A , если выполняются следующие аксиомы:
Z 1 : Z ;
Z 2 : Z Z ;
Z 3 : Z ( Z - конечно).
--> ЧИТАТЬ ПОЛНОСТЬЮ <--