Дипломная работа: Аналоговые перемножители и напряжения
Поскольку проходная характеристика сдвоенного дифференциального каскада остается по-прежнему нелинейной, для линеаризации входа Х служит дифференциальный каскад на транзисторах VT2, VT3, VT5 и VT6. Линеаризация разности выходных токов в нем осуществляется, аналогично каналу Y , установкой резистора R X :
(2.7)
Нагрузкой дифференциального каскада являются транзисторы VT1 и VT4 в диодном включении. Токи коллекторов транзисторов VT2 и VT5, протекая через p-n переходы транзисторов VT1 и VT4, создают на них падения напряжения, разность которых является входным напряжением сдвоенного дифференциального каскада:
(2.8)
где I 0 – начальный ток дифференциального каскада (предполагается, что транзисторы VT1 и VT4 абсолютно идентичны и их токи насыщения IS обратно смещенного p-n перехода одинаковы); IX – приращение тока, обусловленное приращением входного напряжения.
Подставляя (2.8) в (2.6), получим передаточную функцию перемножителя в следующем виде:
(2.9)
где масштабный коэффициент, имеющий размерность напряжения.
Схема, приведенная на рисунке 2.2, является базовой для большинства выпускаемых отечественной и зарубежной промышленностью АП. Для большинства современных интегральных микросхем АП, построенных на основе дифференциальных транзисторных пар с управляемой крутизной преобразования, погрешность перемножения лежит в пределах 0,5-2 % [4–6]. Источниками статической погрешности в АП являются рассогласование характеристик транзисторов в множительном ядре за счет технологического разброса и температурных градиентов по кристаллу, нелинейность входных преобразователей «ток-напряжение» (ПНТ) и т.д. [4]. В [6] показано, что наиболее существенный вклад в нелинейность АП вносят ПНТ, а при снижении погрешности линейности ПНТ до 0,1-0,05 % необходимо учитывать вклад в погрешность перемножения, вносимый объемными сопротивлениями баз транзисторов множительного ядра и логарифмирующих диодов [6].
2.1 Схемотехнические способы снижения погрешности перемножения
Источниками погрешности перемножения в четырехквадрантном АП (рис. 2.2) являются:
- напряжение смещения управляемых током дифференциальных каскадов;
- напряжения смещения ПНТ;
- погрешность установки масштабного коэффициента;
- влияние коэффициента усиления тока базы транзисторов;
- влияние токосуммирующего выходного каскада (при использовании одиночного выхода АП);
- нелинейность ПНТ;
- влияние объемных сопротивлений баз транзисторов.
Погрешности, обусловленные первыми пятью факторами, играют существенную роль, но могут быть снижены за счет тщательного симметрирования схемы с использованием технологических возможностей интегральной технологии, а также в процессе эксплуатационной настройки интегральной схемы АП [4].
В [6] показано, что результирующая погрешность АП, обусловленная нелинейностью ПНТ в каналах X и Y может быть найдена как взвешенная сумма погрешности каждого ПНТ:
,
где X и Y – относительные изменения токов в каждом канале.
Составляющие погрешности, обусловленные нелинейностью ПНТ и объемными сопротивлениями, необходимо снижать схемотехническими приемами, что и будет в дальнейшем рассмотрено.
Упрощенная схема наиболее часто используемого ПНТ, представляющего собой дифференциальный усилитель с последовательной обратной связью по току в эмиттерной цепи, приведена на рисунке 2.3а.
а) б)
Рис. 2.3. Преобразователь «напряжение-ток» (а) и его проходная характеристика (б)
В работе [7] приводится методика оценки погрешности ПНТ такого рода, суть которой сводится к оценке отклонения реальной функции крутизны преобразования напряжения в ток (кривая 2 на рис. 2.3б) от ее линейного приближения (кривая 1 на рис. 2.3б). В этом случае для схемы рис. 2.3а) крутизну преобразования можно представить как
, (2.10)