Дипломная работа: Аналоговые перемножители и напряжения
Результаты моделирования схемы ПНТ (рис. 2.7) приведены на рисунке 2.8.
Погрешность данной схемы ПНТ практически такая же, как и у предыдущей (0,031 %), однако, как будет показано ниже, такое построение схемы ПНТ предоставляет интересные возможности введения дополнительных каналов компенсации, что позволит на порядок снизить погрешность крутизны преобразования.
На основании проведенных исследований можно сделать следующие выводы в отношении применения схем ПНТ с ООС:
- применение ООС в ПНТ позволяет в петлевое усиление раз снизить погрешность крутизны преобразования;
- в ПНТ с ООС отсутствует необходимость точного согласования резисторов;
- снижение погрешности преобразования сопровождается существенным усложнением схемы, увеличением токопотребления и сужением полосы пропускания.
Рис. 2.8. График нелинейности ПНТ (рис. 2.7)
2.1.2 Использование принципов компенсации нелинейности
Основная погрешность линейности преобразования рассмотренного ПНТ обусловлена существенной режимной зависимостью rE от тока эмиттера. Суть рассмотренных ниже схемотехнических приемов заключается в том, что тем или иным способом формируется компенсирующий ток, ослабляющий влияние изменения rE при изменении тока эмиттера.
На рисунке 2.9 приведена схема одного из вариантов такого ПНТ [9]. Оценку нелинейности преобразования напряжения в ток можно произвести аналогичным способом. Для этого рассмотрим следующие уравнения:
; (2.14)
, (2.15)
где – разность напряжений база-эмиттер транзисторов VT2 и VT5; IK – компенсирующий ток вспомогательного дифференциального каскада на транзисторах VT3 и VT4; КК = IK / I 0 .
Суммарный выходной ток ПНТ c учетом знаков приращений можно представить как I S = IX - IK ,откуда из (2.14) и (2.15) следует:
. (2.16)
Поскольку (1+К )» 1, последнее слагаемое в выражении (2.16) можно разложить в ряд. Тогда выражение (2.16) можно представить как
. (2.17)
Рис. 2.9. Упрощенная схема ПНТ с повышенной линейностью
Так как IK = IX - I S , а jТ / I 0 = rE , выражение (2.16) может быть преобразовано к виду:
. (2.18)
При выполнении условия
(2.19)
второе слагаемое в выражении (2.18) обращается в нуль, поэтому результирующая крутизна преобразования напряжения в ток не будет зависеть от уровня входного сигнала.
Так как выражение (2.18) было получено при определенных допущениях (например, коэффициент передачи тока эмиттера a всех транзисторов не зависят от тока и равны единице), выполнение условия (2.19) не исключает полную независимость крутизны от уровня входного напряжения. Однако погрешность преобразования можно сделать достаточно малой, что подтверждается результатами моделирования рассмотренных схем (рис. 2.10).
Графики, приведенные на рисунке 2.10, по сути представляют собой отклонение в процентах нормированной крутизны прямой передачи от единицы, что при U0 = 1 совпадает с выражением (2.12). Для схемы ПНТ (рис. 2.3а) максимальное отклонение составляет 0,75 %, а для схемы ПНТ (рис. 2.9) не превышает 0,015 % в диапазоне изменения входного напряжения ±1 В при питающем напряжении ± 5 В.
Следует также отметить, что для схемы ПНТ, приведенной на рисунке 2.9, достаточно точное выражение для отклонения от линейности может быть получено из выражений (2.14) и (2.15) после аппроксимации их полиномами четвертой степени. В этом случае можно дать следующие рекомендации при осуществлении параметрического синтеза. Условие (2.19) дает приближенное значение сопротивлений резисторов R 1 и RK , а дальнейшую параметрическую оптимизацию можно осуществить, добиваясь, чтобы значение отклонения на краях диапазона совпадали со значение отклонения в точке UX = 0 . Это будет наилучшее приближение к линейной функции.
К недостаткам схемы линейного ПНТ, приведенного на рисунке 2.9, можно отнести необходимость наличия четырех хорошо согласованных источников тока, что увеличивает мощность, потребляемую схемой. Кроме того, даже незначительные различия токов (в пределах ± 5 %) приводят к существенному ухудшению линейности за счет нарушения симметрии схемы.