Дипломная работа: Динамика развития некоторых понятий и теорем теории вероятностей
В своей книге «Теория вероятностей» С.Н. Бернштейн попытался ввести определение понятия вероятности аксиоматическим способом.
Из аксиомы сравнения вероятностей и аксиомы о несовместимых событиях Бернштейн делает следующий вывод: «Если событию X благоприятствуют m случаев из общего числа всех n единственно возможных, несовместимых и равновероятных случаев, то вероятность события X зависит только от чисел m и n (а не от природы рассматриваемого опыта), т.е. вероятность X=F (m, n), где F (m, n) есть некоторая определённая функция».
Но, этим аксиомам удовлетворяет только функция вида F( ), причём–это возрастающая функция дроби . Любую такую функцию F( ) можно принять за вероятность X. Общепринято считать F( )=. Это и есть вероятность события X в высказанных условиях, а точнее классическое определение вероятности.
С уверенностью можно сказать, что определение понятия вероятности лежит в основе любой аксиоматической системы теории вероятностей. На недостатки классического определения вероятности указывали давно. Были видны и недостатки субъективной трактовки вероятности, идущей от Лапласа. Критику этих недостатков встречали доброжелательно. Наиболее широкое распространение получили работы в этом направлении немецкого учёного Р. Мизеса (1883–1953 гг.), который из гитлеровской Германии эмигрировал в США, где он возглавил Институт прикладной математики. Мизес является основателем так называемой частотной концепции в теории вероятностей.
Основным понятием в частотной теории Мизеса является понятие коллектива. Под коллективом понимается бесконечная последовательность k -одинаковых наблюдений, каждое из которых определяет некоторую точку, принадлежащую заданному пространству конечного числа измерений. Говорить о вероятности, по Мизесу, можно только тогда, когда существует эта определённая совокупность событий. Коллектив, по Мизесу, "…должен удовлетворять следующим двум требованиям:
1) относительные частоты появления определённого события в последовательности независимых испытаний имеют определённые предельные значения;
2) предельные значения, о которых говорится в первом требовании, остаются неизменными, если из всей последовательности выбрать любую подпоследовательность.
Приняв за основу тот факт, что вероятность и частота – связанные между собой величины, Мизес определяет вероятность как предельное значение частоты: «Обосновано предположение, что относительная частота появления каждого единичного наблюдаемого признака стремится к определённому предельному значению. Это предельное значение мы называем вероятностью».
Но на самом деле никакого обоснованного предположения у нас нет. Мы никогда не можем знать, имеет ли данная частота предел или нет, хотя бы уже потому, что для этого пришлось бы произвести бесконечное число опытов. Это определение несостоятельно математически, так как мы не можем указать функциональной зависимости между количеством испытаний n и частотой появления событий , где m -количество появлений события, а, не указав такой зависимости, мы не можем вычислить предел, , который принят за вероятность.
Крупнейшие представители теории вероятностей никогда не были приверженцами частотной школы, а приверженцы этой школы не получили существенных результатов в теории вероятностей.
Попыток обосновать теорию вероятностей было достаточно много. Например, итальянский математик Б. Финетти выдвинул субъективное толкование вероятности. Таким подходом к вероятности он пытался преодолеть противоречия, которые возникли и в классической теории вероятностей и в частотной школе Мизеса. По Финетти вероятность является чисто субъективной величиной. Каждый человек по-своему оценивает вероятность того или иного события.
Несколько позже Джеффрис разрабатывал понятие вероятности как степени правдоподобия. Впервые эта концепция была выдвинута Кейнесом в 1921 г. По этой теории каждое предложение имеет определённую вероятность. Вероятностям такого рода нельзя дать частотной интерпретации. Разработка теории степеней правдоподобия продолжается некоторыми математиками и в наши дни.
1.4 Появление аксиоматического определения понятия вероятности
На сегодняшний день закрепилось определение понятия вероятности данное А.Н. Колмогоровым в книге «Основные понятия теории вероятностей» (1933 г.) аксиоматически.
Уже были вскрыты глубокие аналогии между понятиями теории вероятностей и понятиями метрической теории функций. Были установлены аналогии между множеством и событием, мерой множества и вероятностью события, интегралом и математическим ожиданием и др.
Возникла потребность в аксиоматизации теории вероятностей исходя из теоретико-множественных представлений, что и было выполнено в книге Колмогорова. После этой аксиоматизации теория вероятностей заняла равноправное место среди других математических дисциплин.
Рассмотрим аксиоматику Колмогорова.
Пусть имеются наблюдения или испытания, которые хотя бы теоретически допускают возможность неограниченного повторения. Каждое отдельное испытание может иметь тот или иной исход в зависимости от случая. Совокупность всех этих возможных исходов образует множество E , которое является первым основным понятием аксиоматики. Это множество E называется множеством элементарных событий. Что из себя представляют события, являющиеся элементами этого множества, для дальнейшего логического построения совершенно безразлично, как безразлично для аксиоматического построения геометрии, что мы будем понимать под словами «точка», «прямая» и т.п. Только после такого аксиоматического построения теория вероятностей допускает различные интерпретации, в том числе и не связанные со случайными событиями. Любое подмножество множества E , т.е. любую совокупность возможных исходов, называют событием. Или другими словами: случайными событиями называются элементы множества F подмножеств из E . Далее рассматриваются не все события, а только некоторое тело событий. Теория вероятностей занимается только теми событиями, частота которых устойчива. Это положение в аксиоматической теории Колмогорова формализуется таким образом, что каждому событию, которое мы рассматриваем, ставится в соответствие некоторое положительное число, которое называется вероятностью данного события. При этом абстрагируются от всего того, что помогало сформулировать это понятие, например, от частоты. Это даёт возможность интерпретировать вероятность не только вероятностным способом. Тем самым значительно расширяются возможности вероятностей.
Сформулируем аксиомы Колмогорова [1,5].
1. Если случайные события A и B входят в состав F , то события A или B , A и B , не A и не B также содержатся в F .
2. F содержит в качестве элементов множество E и все отдельные его элементы.
3. Каждому элементу A из F поставлено в соответствие неотрицательное вещественное число P(A ), называемое вероятностью события A .
4. P(E )=1.
5. Если A и B не пересекаются и принадлежат F , то P (A +B )=P(A )+P(B ). Для бесконечных множеств F имеется ещё одна аксиома, которая для конечных множеств является следствием пяти приведённых аксиом.
6. Если пересечение последовательности событий пусто, то .
Аксиоматика Колмогорова способствовала тому, что теория вероятностей окончательно укрепилась как полноправная математическая дисциплина.
Проследив динамику развития и формирования понятия вероятности можно сделать вывод, что оно вырабатывалось сложными путями. Математики и философы, политики и просто увлечённые теорией вероятностей учёные пытались облечь понятие вероятности в конкретную форму. Давая правильные и ошибочные определения понятию вероятности, они маленькими шагами продвигались к верному решению этого вопроса. Но даже в хорошо и правильно сформулированных вариантах классического определения вероятности можно обнаружить пробелы и упущения. Например, почти во всех данных вариантах классического определения отсутствует условие конечности числа равновозможных событий, т.е. условие, что . Возможно это условие не оговаривалось, но подразумевалось. С построением системы аксиом для определения понятия вероятности задача некоторой несостоятельности классического определения вероятности была решена. Однако наблюдаются попытки дать трактовку вероятности с более широких позиций, в том числе и с позиций теории информации.
2. Динамика развития понятия математического ожидания
2.1 Предпосылки введения понятия математического ожидания