Дипломная работа: Элементарное изложение отдельных фрагментов теории подгрупповых функторов

- подгрупповой - функтор или подгрупповой функтор на , где - некоторый класс групп;

- совокупность всех - подгрупп группы ;

- тривиальный подгрупповой - функтор;

- единичный подгрупповой - функтор;

- ограничение подгруппового - функтора на класс групп ;

- пересечение системы подгрупповых - функторов ;

- решётка всех подгрупповых - функторов;

- решётка всех замкнутых подгрупповых - функторов;

Прописными готическими буквами обозначаются классы групп, т.е. всякое множество групп, содержащее вместе с каждой своей группой и все группы, ей изоморфные, в частности, формации, т.е. классы групп, замкнутые относительно факторгрупп и подпрямых произведений.

Стандартные обозначения, закрепленные за некоторыми классами групп:

- класс всех групп;

- класс всех абелевых групп;

1. Общие определения и обозначения

Бинарной алгебраической операцией на множестве называют отображение декартова квадрата во множество . Если - бинарная операция на , то каждой упорядоченной паре элементов из соответствует однозначно определенный элемент . Бинарную операцию на обозначают одним из символов: и т.д. Если, например, вместо условимся писать , то вместо пишем .

Говорят, что на множестве X определена бинарная операция (умножение), если для всех .

Если для всех , то операция называется ассоциативной .

Если для всех , то операция называется коммутативной .

Элемент называется единичным , если для всех .

Обратным к элементу называется такой элемент , что .

Полугруппой называется непустое множество с бинарной алгебраической операцией (умножение), удовлетворяющей следующим требованиям:

(1) операция определена на , т.е. для всех и ;

(2) операция ассоциативна, т.е. для любых .

Группой называется непустое множество с бинарной алгебраической операцией (умножением), удовлетворяющей следующим требованиям:

(1) операция определена на , т.е. для всех и ;

(2) операция ассоциативна, т.е. для любых ;

(3) в существует единичный элемент, т.е. такой элемент , что для всех ;

(4) каждый элемент обладает обратным, т.е. для любого существует такой элемент , что .

Группу с коммутативной операцией называют коммутативной или абелевой .

Если - конечное множество, являющееся группой, то G называют конечной группой , а число элементов в - порядком группы .

Также группой называется непустое множество с бинарной алгебраической операцией (умножением), удовлетворяющей следующим требованиям:

К-во Просмотров: 189
Бесплатно скачать Дипломная работа: Элементарное изложение отдельных фрагментов теории подгрупповых функторов