Дипломная работа: Элементарное изложение отдельных фрагментов теории подгрупповых функторов

Теорема 24.11 Пусть - конечное многообразие групп. И пусть каждая группа в конечная. Тогда ширина решетки всех идемпотентов в конечна и в том и только в том случае, когда состоит из нильпотентных групп и

3. Определения и основные примеры подгрупповых функторов

Пусть некоторый класс групп. Составим с каждой группой некоторую систему ее подгрупп . Будем говорить, что - подгрупповой -функтор или подгрупповой функтор на , если выполняются следующие условия: 1) для всех ;

2) для любого эпиморфизма , где А, и для любых групп и имеет место и

Подгрупповой -функтор называется:

1) замкнутым , если для любых двух групп и имеет место ;

2) тривиальным , если для любой группы имеет место

;

3) единичным , если для любой группы система состоит из всех подгрупп группы G.

Тривиальный подгрупповой -функтор обозначается символом , а единичный - символом .

Если и - подгрупповой -функтор, то - такой подгрупповой -функтор, что для всех . Такой функтор называется ограничением функтора на классе .

Рассмотрим несколько примеров подгрупповых функторов. В случае, когда - класс всех групп, подгрупповые -функторы мы будем называть просто подгрупповыми функторами.

Пример 1. Пусть для любой группы ,

Понятно, что - замкнутый подгрупповой функтор. Для обозначения такого подгруппового функтора мы применяем запись .

Пример 2. Пусть - совокупность всех нормальных подгрупп группы для каждой группы . Такой функтор в общем случае замкнутым не является.

Пример 3. Пусть - произвольное натуральное число. Для каждой группы через обозначим совокупность всех таких подгрупп , для которых . Понятно, что - подгрупповой -функтор. Для обозначения такого функтора мы будем применять запись .

Пример 4. Пусть - произвольное кардинальное число. И пусть для любой группы

К-во Просмотров: 185
Бесплатно скачать Дипломная работа: Элементарное изложение отдельных фрагментов теории подгрупповых функторов