Дипломная работа: Элементарное изложение отдельных фрагментов теории подгрупповых функторов

Гомоморфизм, который одновременно является мономорфизмом и эпиморфизмом, будет изоморфизмом.

2. Используемые результаты

Теорема 1.1 (Теорема о соответствии) Пусть - нормальная подгруппа группы . Тогда:

( 1) если - подгруппа группы и , то - подгруппа факторгруппы ;

(2) каждая подгруппа факторгруппы имеет вид , где - подгруппа группы и ;

(3) отображение является биекцией множества S на множество S ;

(4) если S , то - нормальная подгруппа группы тогда и только тогда, когда - нормальная подгруппа факторгруппы .

Лемма 1.2 Пусть - гомоморфизм группы в группу . Тогда:

( 1) единичный элемент группы переходит в единичный элемент группы , т.е. ;

(2) обратный элемент переходит в обратный, т.е. для всех ;

(3) образ гомоморфизма является подгруппой группы , т.е. ;

(4) ядро гомоморфизма является нормальной подгруппой группы , т.е. ;

(5) тогда и только тогда где когда .

Лемма 1.3 Пусть - гомоморфизм группы в группу . Тогда:

( 1) если , то ;

(2) если , то ;

(3) если подмножества и сопряжены в , то и сопряжены в .

Теорема 1.4 (Основная теорема о гомоморфизме) При гомоморфизме групп факторгруппа по ядру изоморфна образу, т.е. если - гомоморфизм, то .

Теорема 1.5 (первая о изоморфизме) Пусть - нормальная подгруппа группы . Тогда для любой подгруппы пересечение является нормальной подгруппой в подгруппе , а отображение

является изоморфизмом групп и .

Теорема 1.6 (вторая о изоморфизме) Если и - нормальные подгруппы группы , причем , то изоморфна .

Лемма 3.1 Пусть - формация, . Тогда

Лемма 20.6. Пусть - подгрупповой функтор и - группа. Если и , тогда .

Лемма 20.7. Пусть , - элементарно абелевы -группы с . Тогда имеет подгруппу такую, что .

Теорема. Пусть - такой набор конгруэнций -алгебры A, что . Пусть прямое произведение факторалгебр и

Тогда - мономорфизм алгебры в алгебру и входит подпрямо в .

Теорема 20.8. Пусть - конечное многообразие локально конечных групп, причем каждая группа из либо счетна, либо конечна. Тогда в том и только в том случае решетка является цепью, когда существует такое простое число , что каждая группа в является элементарно абелевой -группой.

Теорема 20.9. Пусть - конечная группа и - конечное многообразие, порожденное . Тогда в том и только в том случае является элементарной абелевой -группой, когда решетка является цепью.

Лемма 24.9 Пусть - наследственный гомоморф конечных групп. Пусть - замкнутый подгрупповой функтор на Пусть - нильпотентная группа в и Предположим, что , где - простое число. Пусть - нильпотентная группа в такая, что и Тогда

К-во Просмотров: 190
Бесплатно скачать Дипломная работа: Элементарное изложение отдельных фрагментов теории подгрупповых функторов