Дипломная работа: Инверсия плоскости в комплексно сопряженных координатах
Выполнила: студентка V курса
математического факультета
Дмитриенко Надежда Александровна
Научный руководитель:
старший преподаватель кафедры
алгебры и геометрии
Александр Николаевич Суворов
Рецензент:
Допущена к защите в государственной аттестационной комиссии
«___»__________2005 г. Зав. кафедрой В.М. Вечтомов
«___»___________2005 г. Декан факультета В.И. Варанкина
Киров
2005
Содержание
Введение........................................................................................................... 3
Глава 1. Основные положения теории инверсии........................................... 4
1.1. Общие сведения о комплексной плоскости......................................... 4
1.2. Определение инверсии – симметрии относительно окружности........ 5
1.3. Формула инверсии в комплексно сопряженных координатах......... 11
1.4. Неподвижные точки и окружность инверсии.................................... 11
1.5. Образы прямых и окружностей при обобщенной инверсии............ 12
1.6. Свойства обобщенной инверсии........................................................ 19
Глава 2. Применение инверсии при решении задач
и доказательстве теорем................................................................. 30
2.1. Применение инверсии при решении задач на построение............... 30
2.2. Применение инверсии при доказательстве........................................ 41
Заключение.................................................................................................... 43
Библиографический список........................................................................... 44
Введение
В наш век современных технологий так и хочется привлечь компьютер для решения задач, в частности, геометрических. Было бы замечательно, если бы от пользователя требовалось только занести в программу нужные данные, а последняя сама бы все рассчитала и выдала, к примеру, радиус и центр искомой окружности. Но вся проблема в том, что программа может работать только с координатами. И есть смысл перевода наиболее эффективных с точки зрения решения задач преобразований, в число которых входит и инверсия, на язык координат. Наиболее просто это получается на комплексной плоскости. Изучению преобразования инверсии комплексной плоскости и посвящена эта дипломная работа.
Цель работы состоит в следующем: обобщить и систематизировать основные факты об инверсии комплексной плоскости и показать применение этого преобразования при решении задач и доказательстве теорем.
Поставленная цель предполагала решение следующих задач:
· вывод комплексной формулы инверсии;
· доказательство основных свойств инверсии на комплексной плоскости;
--> ЧИТАТЬ ПОЛНОСТЬЮ <--