Дипломная работа: Инверсия плоскости в комплексно сопряженных координатах
· доказательство ряда теорем при помощи инверсии комплексной плоскости.
Оказалось, что не так много специальных работ по теме. Инверсия комплексной плоскости оказалась крайне слабо освещена в литературе по сравнению с инверсией евклидовой плоскости. Поступали следующим образом: брали известный факт из евклидовой плоскости, а потом доказывали его методом комплексно сопряженных координат. Чаще всего такие доказательства были понятнее и короче, чем исходные.
Глава 1
Основные положения теории инверсии
1.1. Общие сведения о комплексной плоскости . Зададим на плоскости прямоугольную декартову систему координат 0xy . Тогда каждому комплексному числу z , представленному в алгебраической форме , можно однозначно поставить в соответствие точку М плоскости с координатами . Комплексное число z называют комплексной координатой соответствующей точки М и пишут: .
Следовательно, множество точек евклидовой плоскости находится во взаимно однозначном соответствии с множеством комплексных чисел. Эту плоскость называют плоскостью комплексных чисел.
Все необходимые сведения об этой плоскости очень хорошо даны в книге Я. П. Понарина [3]. Здесь приведем лишь некоторые формулы, взятые из того же источника, использованные в работе.
Расстояние между двумя точками с координатами а и b равно .
Уравнение прямой в канонической форме: , .
Уравнение окружности с центром в точке s и радиусом r : . Также часто используют запись , , , где центр , радиус .
Скалярное произведение векторов: .
Коллинеарность трех точек с координатами а , b и с : .
Критерий коллинеарности векторов: .
Расстояние от точки с координатой z 0 до прямой , : .
Критерий параллельности двух прямых и , заданных в канонической форме: .
Критерий перпендикулярности двух прямых и , заданных в канонической форме: .
Двойное отношение четырех точек плоскости с координатами а , b , с иd : ; аргумент w равен ориентированному углу между окружностями abc и abd .
Критерий принадлежности четырех точек одной окружности или прямой: .
Критерий ортогональности окружностей , и , : .
Параллельный перенос на вектор с координатой r : .
Гомотетия с центром s и коэффициентом s : , .
Осевая симметрия с осью симметрии , где : .
Центральная симметрия с центром : .
1.2. Определение инверсии – симметрии относительно окружности . [1]
Определение 1 . Углом между двумя окружностями называется угол между касательными к окружностям в точке их пересечения.
Если окружности не имеют общих точек, то угол между ними не определен.
Определение 2. Углом между окружностью S и прямой l называется угол между прямой l и касательной к окружности S в точке пересечения этой окружности с l .
Опять же, если прямая и окружность не имеют общих точек, то угол между ними не определен.
Из определения 2 следует, что окружности, центры которых лежат на данной прямой l , и только эти окружности, перпендикулярны к прямой l .
Теорема 1 . Все окружности, перпендикулярные прямой l и проходящие через точку А , проходят и через точку В , симметричную точке А относительно прямой l .
□ Рассмотрим произвольную окружность с центром на прямой l , проходящую через точку А . Введем систему координат таким образом, что прямая l является действительной осью, а начало координат располагается в центре нашей окружности, и радиус ее равен 1.