Дипломная работа: Моделі відкритої мережі
,
де - імовірності переходу.
Вирішимо отриману систему рівнянь
Таким чином, рівняння трафіка має єдине позитивне рішення , тобто . Позитивне в тому розумінні, що .
Розглянемо ізольований -й вузол, уважаючи, що на нього надходить найпростіший потік заявок інтенсивності (див. малюнок 1.2.1).
Малюнок 1.2.1
Він представляє із себе систему, що відрізняється від тільки тем, що інтенсивність обслуговування залежить від числа заявок у ній , .
Знайдемо стаціонарний розподіл для такого ізольованого процесу. Граф переходів зобразиться в такий спосіб.
Рівняння рівноваги для вертикальних перерізів мають вигляд ( на малюнку 1.2.2 воно зображено пунктирною лінією ).
, , ,
Тоді
.
З умови знаходимо, що
.
Таким чином, , де рівні
, (1.2.2)
, (1.2.3)
. (1.2.4)
Стаціонарний розподіл існує і єдино, якщо виконується умова ергодичності:
і (1.2.5)
Теорема 1.2.1.( Розкладання Джексона) Нехай рівняння трафіка (1.2.1) має єдине позитивне рішення й виконане умова ергодичності (1.2.5). Тоді фінальні стаціонарні ймовірності станів мережі Джексона мають вигляд
, (1.2.6)
де визначаються по формулі
, (1.2.7)