Дипломная работа: Нахождение решений дифференциальных уравнений
Федеральное агентство по образованию
Государственное образовательное учреждение
высшего профессионального образования
"Тамбовский государственный университет имени Г.Р. Державина"
Институт математики, физики и информатики.
"Нахождение решений дифференциальных уравнений,
имеющих вертикальные асимптоты"
ДИПЛОМНАЯ РАБОТА
Допущена к защите Заведующий кафедрой доктор физико-математический наук, профессор _________________ |
Студентка 6 курса заочного отделения научный руководитель доктор физико-математических наук, профессор, профессор кафедры алгебры и геометрии __________________ |
Тамбов, 2009
СОДЕРЖАНИЕ
Введение
Метод нахождения приближенного решения дифференциальных уравнений, имеющих вертикальные асимптоты
Пример
Список литературы
ВВЕДЕНИЕ
Рассмотрим общее дифференциальное уравнение 1 порядка.
=f (x, y)
Решением этого уравнения на интервале I= [a,b] называется функция u(x)
Решить это дифференциальное уравнение численным методом означает, для заданной последовательности аргументов х0, х1…, хn и числа у0, не определяя аналитический вид функции у = F(x), найти такие значения
у1, у2,…, уn, что уi = F(xi), i=1,2,…
Таким образом, численные методы позволяют вместо нахождения функции
y=F(x) получить таблицу значений этой функции для заданной последовательности аргументов. Величина называется шагом интегрирования. Часто выбирают
--> ЧИТАТЬ ПОЛНОСТЬЮ <--