Дипломная работа: Обучение решению задач на проценты в курсе алгебры основной школы

Вопрос П1 . Сколько процентов составляет А от В ?

Формула ответа: % .

Обсуждение. Нужно обратить внимание на то, что является стопроцентной базой (в данном случае – это В ).

Пример:

В одном городе Канады 70% жителей знают французский язык и 80% - английский язык. Сколько процентов жителей этого города знают оба языка (если учесть, что каждый житель города знает хотя бы один из двух языков)?

Алгебраическое решение: Пусть x жителей знают только английский, y – только французский, z – оба языка. Тогда можно дважды применить формулу, соответствующую вопросу П1.

Сложив оба эти равенства, получим

1+

Ответ: 50%.

Геометрическое решение. Разместим всех жителей города на отрезке так, что знающие английский язык стоят на отрезке слева, а знающие французский – справа. Если этот отрезок – 100%, то общая часть этих множеств есть отрезок [30%,80%] «протяженностью» в 50% (см. рис 1.).

Рис 1.

Вопрос П2. На сколько процентов А больше чем В ?

Формула ответа: % .

Обсуждение. Как и при обсуждении вопроса П1 нужно определить стопроцентную базу (в данном случае – это В ).

Вопрос П3 . На сколько процентов А меньше, чем В ?

Формула ответа: % .

Обсуждение. Конструкция ответа аналогична предыдущему случаю.

Следует отметить, что решение данной группы задач можно проводить как алгебраическим, так и геометрическим способом.

Таким образом, можно сказать, что задачи на проценты очень разнообразны, а понятие процента используется в различных областях науки и практики.

§ 3. Изучение темы «Проценты» в современной школе .

Понятие процента имеет широкое практическое применение, поэтому оно является обязательной частью школьной программы по математике. Школьники должны научится решать основные задачи на проценты, представлять их в виде десятичных и обыкновенных дробей.

Традиционно тема «Проценты» изучается в рамках младших классов среднего звена. Можно выделить несколько подходов к изучению данной темы.

Первый подход. Рассмотрение процентов ведется как отдельная тема, без опоры на дроби. Нахождение нескольких процентов от числа осуществляется в два действия. Изучение дробей ведется отдельной темой, гораздо позже задач на проценты. Таким образом, обучение идет от частного к общему, что менее эффективно и дает меньше возможностей для развития обучаемого.

Второй подход. Задачи на проценты осваиваются как частный случай задач на дроби и все приемы решения переносятся на них, то есть изучение идет от общего случая – задач на дроби, к частному. В большинстве современных учебников реализован второй подход.

Рассмотрим более подробно изучение данной темы в некоторых современных учебниках, рекомендованных Министерством Образования России на 2003/2004 учебный год для преподавания математики в основной школе.

По учебникам [19], [21] тема «Проценты» изучается в V классе. Перед введением понятия «процент» автор предлагает рассмотреть примеры:

«Сотую часть центнера называют килограммом, сотую часть метра – сантиметром, сотую часть гектара – акром. Принято называть сотую часть любой величины процентом».

Рассматриваются три основные задачи на проценты:

Задача вида К1 .

К-во Просмотров: 288
Бесплатно скачать Дипломная работа: Обучение решению задач на проценты в курсе алгебры основной школы