Дипломная работа: Обучение решению задач на проценты в курсе алгебры основной школы
«… чтобы узнать, на сколько процентов увеличилась или уменьшилась данная величина, необходимо найти:
1) на сколько единиц увеличилась или уменьшилась эта величина;
2) сколько процентов составляет полученная разность от первоначального значения величины»
Пример 8. До снижения цен холодильник стоил 250р., после снижения – 230 р. На сколько процентов снизилась стоимость холодильника?
Решение:
Узнаем, на сколько рублей изменилась цена холодильника: 250-230=20 р.
Найдем, сколько процентов составляет полученная разность от первоначальной стоимости холодильника: =0,08=8%
Ответ: стоимость холодильника понизилась на 8%.
Правила ограничивают учащихся, не дают им рассуждать над решением. Поэтому каждая задача на проценты становится алгоритмом и вызывает затруднения, если правило забыто. Решение задач в данном курсе арифметическое. Использование уравнений при решении начинается лишь в конце года только в сложных задачах. Следовательно, не каждый ученик сможет овладеть этим умением. Поэтому нужно включить задачи на проценты при изучении уравнений.
В учебниках [7], [8] понятие процента также изучается в конце V класса. Перед введением определения рассматриваются примеры употребления понятия «процент»:
«Всхожесть семян составляет 98 процентов; в выборах президента России приняли участие 65 процентов избирателей… ». Процент определяется как обозначение сотой доли. В V классе авторы рассматривают только два вида задач: задачи вида К1 и К2 . Решение этих задач осуществляется арифметическим способом. Большое внимание уделяется вопросу, какую величину взять за 100%.
Далее тема «Проценты» изучается в VI классе. Здесь рассматриваются те же виды задач, но решение осуществляется уже алгебраическим способом (составление линейных уравнений). Авторы формулируют правила нахождения части от целого и целого по его части:
«1) чтобы найти часть от целого, надо целое (соответствующее ему число) умножить на дробь (соответствующее этой части);
2) чтобы найти целое по его части, надо часть (соответствующее этой части число) разделить на соответствующую ей дробь».
После этого тема не рассматривается.
Несколько другой подход в учебниках [2], [3]. Проценты начинают изучаться в начале VI класса. Вводится понятие процента как одной сотой части числа (величины). Рассматриваются задачи трех типов:
а) нахождение процентов от данного числа К1 .
Сначала рассматривается нахождение 1% от данного числа. Затем - нахождение произвольного числа процентов.
б) нахождение числа по данному числу его процентов К2 .
Также в первую очередь обсуждается, как найти число, 1% которого известен. Затем эта задача рассматривается для любого произвольного числа процентов.
в) нахождение процентного отношения двух чисел П1 . Авторы формулируют правило «Чтобы отношение двух чисел выразить в процентах, можно это отношение умножить на 100»
Все три типа задач решаются сначала арифметическим способом, а затем их решают, на основе свойств пропорциональности.
Пример 9. Найти 8% от 35.
Решение: Пусть x – искомое число, тогда:
![]() |
, x =
Ответ: 2
Рассматриваются также задачи, в которых нужно увеличить (уменьшить) число на некоторое число процентов К3 и К4. Проценты также используются при изучении диаграмм.
В середине учебного года авторы снова предлагают вернуться к понятию процента. Они хотят установить связь между десятичными дробями и процентами, вспоминают ранее изученный материал и предлагают более сложные задачи.
Пример 10.