Дипломная работа: Понятие и классификация систем массового обслуживания
– среднее время пребывания заявки с СМО
– среднее время пребывания заявки в очереди
Для открытых СМО справедливы соотношения:
(12)
(13)
Эти соотношения называются формулами Литтла и применяются только для стационарных потоков заявок и обслуживания.
Рассмотрим некоторые конкретные типы СМО. При этом будет предполагаться, что плотность распределения промежутка времени между двумя последовательными событиями в СМО имеет показательное распределение (7), а все потоки являются простейшими.
5. Основные типы открытых систем массового обслуживания
5.1 Одноканальная система массового обслуживания с отказами
Размеченный граф состояний одноканальной СМО представлен на рисунке 3.
Рисунок 3 – Граф состояний одноканальной СМО
Здесь и – интенсивность потока заявок и выполнения заявок соответственно. Состояние системы So обозначает, что канал свободен, а S1 – что канал занят обслуживанием заявки.
Система дифференциальных уравнений Колмогорова для такой СМО имеет вид:
где po (t) и p1 (t) – вероятности нахождения СМО в состояниях So и S1 соответственно. Уравнения для финальных вероятностей po и p1 получим, приравнивая нулю производные в первых двух уравнениях системы. В результате получим:
(14)
(15)
Вероятность p0 по своему смыслу есть вероятность обслуживания заявки pобс , т. к. канал является свободным, а вероятность р1 по своему смыслу является вероятностью отказа в обслуживании поступающей в СМО заявки ротк , т. к. канал занят обслуживанием предыдущей заявки.
5.2 Многоканальная система массового обслуживания с отказами
Пусть СМО содержит n каналов, интенсивность входящего потока заявок равна , а интенсивность обслуживания заявки каждым каналом равна . Размеченный граф состояний системы изображён на рисунке 4.
Рисунок 4 – Граф состояний многоканальной СМО с отказами
Состояние S0 означает, что все каналы свободны, состояние Sk (k = 1, n) означает, что обслуживанием заявок заняты k каналов. Переход из одного состояния в другое соседнее правое происходит скачкообразно под воздействием входящего потока заявок интенсивностью независимо от числа работающих каналов (верхние стрелки). Для перехода системы из одного состояния в соседнее левое неважно, какой именно канал освободится. Величина характеризует интенсивность обслуживания заявок при работе в СМО k каналов (нижние стрелки).
Сравнивая графы на рис. 3 и на рис. 5 легко увидеть, что многоканальная СМО с отказами является частным случаем системы рождения и гибели, если в последней принять и
(16)
При этом для нахождения финальных вероятностей можно воспользоваться формулами (4) и (5). С учётом (16) получим из них:
(17)
(18)
Формулы (17) и (18) называются формулами Эрланга – основателя теории массового обслуживания.
Вероятность отказа в обслуживании заявки ротк равна вероятности того, что все каналы заняты, т.е. система находится в состоянии Sn . Таким образом,
(19)