Дипломная работа: Понятие и классификация систем массового обслуживания

(20)

Абсолютную пропускную способность найдём из (9) и (20):

Среднее число занятых обслуживанием каналов можно найти по формуле (10), однако сделаем это проще. Так как каждый занятый канал в единицу времени обслуживает в среднем заявок, то можно найти по формуле:

5.3 Одноканальная система массового обслуживания с ограниченной длиной очереди

В СМО с ограниченной очередью число мест m в очереди ограничено. Следовательно, заявка, поступившая в момент времени, когда все места в очереди заняты, отклоняется и покидает СМО. Граф такой СМО представлен на рисунке 5.

S0

Рисунок 5 – Граф состояний одноканальной СМО с ограниченной очередью

Состояния СМО представляются следующим образом:

S0 – канал обслуживания свободен,

S1 – канал обслуживания занят, но очереди нет,

S2 – канал обслуживания занят, в очереди одна заявка,

Sk +1 – канал обслуживания занят, в очереди k заявок,

Sm +1 – канал обслуживания занят, все m мест в очереди заняты.

Для получения необходимых формул можно воспользоваться тем обстоятельством, что СМО на рисунок 5 является частным случаем системы рождения и гибели, представленной на рисунке 2, если в последней принять и


(21)

(22)

(23)

Выражения для финальных вероятностей состояний рассматриваемой СМО можно найти из (4) и (5) с учётом (21). В результате получим:

При р = 1 формулы (22), (23) принимают вид

При m = 0 (очереди нет) формулы (22), (23) переходят в формулы (14) и (15) для одноканальной СМО с отказами.

Поступившая в СМО заявка получает отказ в обслуживании, если СМО находится в состоянии Sm +1 , т.е. вероятность отказа в обслуживании заявки равна:

Относительная пропускная способность СМО равна:

Абсолютная пропускная способность равна:

Среднее число заявок, стоящих в очереди Lоч , находится по формуле


К-во Просмотров: 607
Бесплатно скачать Дипломная работа: Понятие и классификация систем массового обслуживания