Дипломная работа: Программное обеспечение системы обработки изображения в реальном времени
3. Повторяем пункт 2 до тех пор, пока не получим конечное количество подмножеств .
Метод был адаптирован и реализован функциями библиотеки OpenCV. Пример его работы представлен на рис.
№ | Разностное изображение | Результат: области правильной формы | |
Круг | Прямоугольник | ||
1 | |||
2 | |||
3 |
Рис. Пример работы алгоритма для разных областей правильной формы.
В первом столбце показаны изображения, полученные после алгоритма сравнения двух изображений. Во втором и третьем столбцах показаны результаты работы вышеописанного алгоритма. Во втором столбце в результате преобразований мы получаем область в виде круга, а в третьем в виде прямоугольника.
В первой и второй строке исходным является изображение руки. Как видно, область движения руки не является однородной. В результате работы алгоритма, область движения руки сводиться к однородной области правильной формы (круг, прямоугольник).
В третьей строке исходным является изображение камня на игровой доске. Аналогично, в результате работы алгоритма область движения камня сводиться к однородной области правильной формы (круг, прямоугольник).
1.3 Метод гистограмм
В методе используется гистограмма изображения искомого объекта для нахождения объекта с такими же цветовыми характеристиками на серии изображений.
Нужно построить изображение в оттенках серого цвета, содержащее необходимые нам объекты.
Введём оператор, который преобразует функцию яркости изображения в функцию количественного распределения пикселей с определенным значением яркости (гистограмму) (где k – численное значение яркости):
Обратный оператор преобразует гистограмму в изображение в оттенках серого.
Алгоритм состоит из следующих этапов:
1. Построение гистограмм искомого объекта и исходного изображения
2. Формируем новую гистограмму, как нормированное произведение и :
3. Используя обратное преобразование , получаем двумерную функцию, которая является искомым изображением в оттенках серого:
Метод был адаптирован и реализован функциями библиотеки OpenCV. Результаты применения метода приведены на рис.
Доска | Черный камень | Белый камень | ||
Искомое изображение | ||||
Гистограмма искомого изображения | ||||
Исходное изображение | По гистограмме доски | По гистограмме черного камня | По гистограмме белого камня | |
№ | ||||
1 | ||||
2 | ||||
3 |
Искомыми изображениями являются изображения игровой доски, чёрного и белого камня. В таблице представлены их гистограммы.
Во всех трёх опытах к исходному изображению, содержащему область движения, применялся вышеописанный метод. В результате в каждом из опытов были получены три изображения. Каждое из изображений содержит область, в которой нахождение искомого объекта максимально, т.е. максимально количество белых пикселей в этой области
1.4. Подготовка изображения к распознаванию
С точки зрения задачи распознавания, более удобно использовать изображения объектов, имеющие одинаковый размер и приблизительно одинаковую ориентацию в пространстве. Однако, алгоритмы выделения объектов, возвращают объекты, искаженные перспективой – различных размеров и произвольно ориентированных на изображении.
Для приведения изображения найденного объекта к общему виду, необходимо повернуть его на нужный угол. В эталонных и исследуемых изображениях объектов находятся две контрольные точки, после чего изображения разворачивают, так чтобы вектора, соединяющие эти точки, совпали.
Контрольными точками могут быть, например:
1. Видимый центр изображения.
2. Центр масс изображения.
3. Точка, заметно отличающаяся от остальных по цвету.
4. Центр маркера, поставленного на объекте
и др.
Также, необходимо, привести эталонные и исследуемые изображения к одному размеру.
Перечисленные выше операции выполняются аффинными преобразованиями над матрицами изображений, общий вид которых:
Используются частные случаи аффинных преобразованияй:
1. Растяжение (сжатие) вдоль координатных осей, задаваемое в виде: