Дипломная работа: Программное обеспечение системы обработки изображения в реальном времени
3. Нейросети (обычно для черно-белых изображений) – на входы нейросети подаются значения элементов вектора, на выходах формируется сигнал, классифицирующий объект на изображении;
4. Метод опорных векторов (support vector machines) – для распознавания изображений;
5. Моделирование многомерной функции распределения векторов признаков изображений объекта, оценка вероятности принадлежности тестового изображению к смоделированному распределению (факторный анализ, метод главных компонент, анализ независимых компонент, линейный дискриминантный анализ);
6. Деформируемые модели ;
Прямое представление черно-белого изображения размера m*n в качестве вектора порождает пространство размерности m*n (яркость каждого пикселя – значение элемента вектора в таком пространстве). То есть изображение сравнительно небольшого разрешения (100x100) порождает пространство размерности 10,000. Работать в таком пространстве непросто, поэтому применяются различные методики снижения размерности, например метод главных компонент (principal components analysis, PCA)
Другие примеры характеристик (признаков) изображений, используемых для их классификации и распознавания:
1. Статистика распределения цветов (в различных представлениях, в том числе гистограмма изображения);
2. Статистические моменты (среднее, дисперсия, скрытые Марковские модели);
Количество и свойства графических примитивов в объекте (прямых линий, окружностей – для распознавания символов) (на основе преобразования Хафа)
2.1. Метод наименьших квадратов
Перед тем, как начинать рассмотрение МГУА, было бы полезно вспомнить или узнать впервые метод наименьших квадратов — наиболее распространенный метод подстройки линейно зависимых параметров.
Рассмотрим для примера МНК для трех аргументов:
Пусть функция T=T(U, V, W) задана таблицей, то есть из опыта известны числа Ui , Vi , Wi , Ti ( i = 1, … , n). Будем искать зависимость между этими данными в виде:
(ф. 1)
где a, b, c — неизвестные параметры.
Подберем значения этих параметров так, чтобы была наименьшей сумма квадратов уклонений опытных данных Ti и теоретических Ti = aUi + bVi + cWi , то есть сумма:
(ф. 2)
Величина s является функцией трех переменных a, b, c. Необходимым и достаточным условием существования минимума этой функции является равенство нулю частных производных функции s по всем переменным, то есть:
(ф. 3)
Так как:
(ф. 4)
то система для нахождения a, b, c будет иметь вид:
(ф. 5)
Данная система решается любым стандартным методом решения систем линейных уравнений (Гаусса, Жордана, Зейделя, Крамера).
Рассмотрим некоторые практические примеры нахождения приближающих функций:
1. y = ax2 + bx + g
Задача подбора коэффициентов a, b, g сводится к решению общей задачи при T=y, U=x2 , V=x, W=1, a=a, b=b, g=c.
2. f(x, y) = asin(x) + bcos(y) + g/x
Задача подбора коэффициентов a, b, g сводится к решению общей задачи при T=f, U=sin(x), V=cos(y), W=1/x, a=a, b=b, g=c.
Если мы распространим МНК на случай с m параметрами,
(ф. 6)