Дипломная работа: Развитие понятия "Пространство" и неевклидова геометрия

Введение

Глава I. Развитие геометрии

1.1 История геометрии

1.2 Постулаты Евклида

1.3 Аксиоматика Гильберта

1.4 Другие системы аксиом геометрии

Глава II. Неевклидовы геометрии в системе Вейля

2.1 Элементы сферической геометрии

2.2 Эллиптическая геометрия на плоскости

2.3 Геометрия Лобачевского в системе Вейля

2.4 Различные модели плоскости Лобачевского. Независимость 5-го постулата Евклида от остальных аксиом Гильберта

Заключение

Список литературы


Введение

Любая теория современной науки считается единственно верной, пока не создана следующая. Это своеобразная аксиома развития науки.

Этот факт многократно подтверждался. Физика Ньютона переросла в релятивистскую физику, а та в квантовую. Теория флогистона стала химией, а самозарождение мышей из грязи обернулось биологией. Такова судьба всех наук, и нельзя сказать, что сегодняшнее открытие через двадцать лет не окажется грандиозной ошибкой. Но это тоже нормально – ещё Ломоносов говорил: «Алхимия – мать химии: дочь не виновата, что её мать глуповата».

Участь эта не обошла и геометрию. Традиционная Евклидова геометрия переросла в неевклидову, геометрию Лобачевского. Именно этому разделу математики, его истории и особенностям и посвящен этот проект.

В своём реферате я хочу показать, что кроме геометрии, которую изучают в школе (Геометрии Евклида или употребительной геометрии), существует еще одна геометрия, геометрия Лобачевского. Эта геометрия существенно отличается от евклидовой, например, в ней утверждается, что через данную точку можно провести бесконечно много прямых, параллельных данной прямой, что сумма углов треугольника меньше 180 В геометрии Лобачевского не существует прямоугольников, подобных треугольников и так далее.

Я выбрал данную тему по нескольким причинам: теория геометрии Лобачевского помогает взглянуть по-другому на окружающий нас мир, это интересный, необычный и прогрессивный раздел современной геометрии, она дает материал для размышлений – в ней не все просто, не все ясно с первого взгляда, чтобы ее понять, нужно обладать фантазией и пространственным воображением. Ситуация с геометрией Лобачевского и геометрией Евклида во многом похожа на ситуацию с Теорией относительности Эйнштейна и классической физикой. Геометрия Лобачевского и ОТП Эйнштейна это прогрессивные взаимосвязанные теории, выполняющиеся на огромных величинах и расстояниях, и остающимися верными на приближениях к нулю. В пространственной модели ОТП используется не обычная евклидовая плоскость, а искривленное пространство, на котором верна теория Лобачевского.


Глава I. Развитие геометрии

1.1 История геометрии

Геометрия – это одна из древнейших наук. Исследовать различные пространственные формы издавна побуждало людей их практическая деятельность. Древнегреческий ученый Эдем Родосский в IV веке до нашей эры писал: «Геометрия была открыта египтянами, и возникла при измерении Земли. Это измерение было им необходимо вследствие разлития реки Нил, постоянно смывавшей границы. Нет ничего удивительного, что эта наука, как и другие, возникла из потребности человека».

Считается, что геометрия началась в так называемой Ионийской школе. Её основателем считается Фалес Милетский (640-540 (546?) гг. до н. э.). Он считался одним из семи мудрецов Греции, первым математиком, астрономом и философом. Он доказал, что углы при основании равнобедренного треугольника равны, что вертикальные углы равны, что диаметр делит окружность пополам и ещё множество теорем. Предсказание затмения солнца в 585 году также приписывается ему.

Огромный импульс развития этой школе дал Пифагор (569-470 гг. до н. э.). В основном о его личных качествах пишут то же самое, что и о Фалесе. Но к этому ещё можно добавить титул чемпиона по боксу на олимпийских играх – звание, среди математиков редкое.

Несмотря на все его достижения, мнение современников хорошо выразил Гераклит: «Многознание без разума». Что ж, это было вполне заслужено: Пифагор засекречивал открытия и приписывал себе работы учеников. Пифагор также заставлял своих воспитанников исполнять целый свод очень странных правил: например, не прикасаться к белому петуху.

Но факт есть факт - и одна из теорем Пифагора теперь известна каждому – это теорема о равенстве квадрата гипотенузы сумме квадратов катетов. Эта теорема настолько популярна в мире математиков, что одних только доказательств накопилось 39 штук. Их можно посмотреть на сайте www.cut-the-knot.com/pythagoras.

Платон (428-348) знаменит введением принципа дедуктивности в математике, или принципа развития от простого к сложному. Он также знаменит постановкой трех задач на построение. Используя только циркуль и линейку, надо было:

1. Разделить угол на три части (задача о трисекции угла).

2. Построить квадрат, равный по площади данному кругу (задача о квадратуре круга).

3. Построить куб, равный по объему данному (задача об удвоении куба).

Нерешаемость этих задач была доказана только в 19 веке, но перед этим они успели вызвать настоящую бурю: например, задача №2 вызвала появление интегрального исчисления.

Многие первоначальные геометрические сведения получили также шумеро-вавилонские, китайские и другие ученые древнейших времен. Устанавливались они сначала только опытным путем, без логических доказательств.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 199
Бесплатно скачать Дипломная работа: Развитие понятия "Пространство" и неевклидова геометрия