Дипломная работа: Развитие понятия "Пространство" и неевклидова геометрия
Пару различных точек А и В назовём отрезком и будем обозначать символом АВ или ВА. Точки прямой, определяемой А и В, лежащие между ними, будем называть внутренними точками, или просто точками отрезка АВ. Остальные точки указанной прямой будем называть внешними точками отрезка АВ.
II , 4 (Аксиома Паша). Если А, В и С – три точки, не лежащие на одной прямой, и а – некая прямая в плоскости, определяемой этими точками, не содержащая ни одной из указанных точек и проходящая через некоторую точку отрезка АВ, то эта прямая проходит также либо через некоторую точку отрезка АС, либо через некоторую точку отрезка ВС.
Подчеркнём, что из одних аксиом порядка II, 1 – 4 ещё не вытекает, что любой отрезок имеет внутренние точки. Однако привлекая ещё аксиомы принадлежности I, 1 – 3 можно доказать следующее утверждение:
Теорема 6. Каковы бы ни были две различные точки А и В на прямой, ими определяемой, существует по крайней мере одна точка С, лежащая между А и В.
Теорема 7. Среди любых трёх точек одной прямой всегда существует одна точка, лежащая между двумя другими.
Теорема 8. Если точки А, В и С не принадлежат одной прямой и если некоторая прямая а пересекает[1] какие-либо два из отрезков АВ, ВС и АС, то эта прямая не пересекает третий из указанных отрезков.
Теорема 9. Если В лежит на отрезке АС, и С – на отрезке В D , то В и С лежат на отрезке А D .
Теорема 10. Если С лежит на отрезке А D , а В – на отрезке АС, то В лежит также на отрезке А D , а С – на отрезке BD .
Теорема 11. Между любыми двумя точками прямой существует бесконечно много других её точек.
Теорема 12. Пусть каждая из точек С и D лежит между точками А и В. Тогда если М лежит между С и D , то М лежит и между А и В.
Теорема 13. Если точки С и D лежат между точками А и В, то все точки отрезка С D принадлежат отрезку АВ (в этом случае мы будем говорить, что отрезок С D лежит внутри отрезка АВ).
Теорема 14. Если точка С лежит между точками А и В, то 1) никакая точка отрезка АС не может быть точкой отрезка C В, 2) каждая отличная от С точка отрезка АВ принадлежит либо отрезку АС, либо отрезку СВ.
Указанные утверждения позволяют упорядочить множество точек любой прямой и выбрать на этой прямой направление.
Будем говорить, что две различные точки А и В прямой a лежат по разные стороны (по одну сторону) от третьей точки О той же прямой, если точка О лежит (не лежит) между А и В.
Из указанных выше утверждений вытекает следующая теорема.
Теорема 15. Произвольная точка О каждой прямой а разбивает все остальные точки этой прямой на два непустых класса так, что любые две точки прямой а, принадлежащие одному и тому же классу, лежат по одну сторону от О, а любые две точки, принадлежащие разным классам, лежат по разные стороны от О.
Таким образом, задание на любой прямой двух различных точек О и Е определяет на этой прямой луч или полупрямую ОЕ, обладающую тем свойством, что любая её точка и точка Е лежат по одну сторону от О.
Выбрав на прямой а две различные точки О и Е, мы можем теперь определить порядок следования точек на прямой по следующему правилу: 1) если А и В – любые точки луча ОЕ, то будем говорить, что А предшествует В, если А лежит между О и В, 2) будем говорить, что точка О предшествует любой точке луча ОЕ, 3) будем говорить, что любая точка, принадлежащая той же прямой и не принадлежащая лучу ОЕ, предшествует как точке О, так и любой точке луча ОЕ, 4) если А и В – любые точки, не принадлежащие лучу ОЕ, то мы будем говорить, что А предшествует В, если В лежит между А и О.
Легко проверить, что для выбранного нами порядка следования точек прямой а справедливо свойство транзитивности: если А предшествует В, а В предшествует С, то А предшествует С.
Аксиомы, приведённые выше, позволяют упорядочить и точки, принадлежащие произвольной плоскости α.
Теорема 16. Каждая прямая а, принадлежащая плоскости α, разделяет не лежащие на ней точки этой плоскости на два непустых класса так, что любые две точки А и В из разных классов определяют отрезок АВ, содержащий точку прямой а, а любые две точки А и А’ из одного класса определяют отрезок АА’, внутри которого не лежит ни одна точка прямой а.
В соответствие с утверждением этой теоремы мы можем говорить, что точки А и А’ (одного класса) лежат в плоскости α по одну сторону от прямой а , а точки А и В (разных классов) лежат в плоскости α по разные стороны от прямой а .
III . Аксиомы конгруэнтности
III , 1. Если А и В – две точки на прямой а, А’ – точка на той же прямой или на другой прямой а’, то по данную от точки А’ сторону прямой а’ найдется, и притом только одна, точка В’ такая, что отрезок А’ B ’ конгруэнтен отрезку АВ. Каждый отрезок АВ конгруэнтен отрезку ВА.1
III , 2. Если отрезки А’ B ’ и А” B ” конгруэнтны одному и тому же отрезку АВ, то они конгруэнтны и между собой.
III , 3. Пусть АВ и ВС – два отрезка прямой а, не имеющие общих внутренних точек, А’ B ’ и B ’ C ’ – два отрезка той же прямой, или другой прямой а’, также не имеющие общих внутренних точек. Тогда если отрезок АВ конгруэнтен отрезку А’ B ’, а отрезок ВС конгруэнтен отрезку B ’ C ’, то отрезок АС конгруэнтен отрезку А’ C ’.
Сформулированные три аксиомы относятся к конгруэнтности отрезков. Для формулировки следующих аксиом нам понадобятся понятие угла и его внутренних точек .
Пара полупрямых h и k , выходящих из одной и той же точки О и не лежащих на одной прямой, называется углом и обозначается символом или .
Если полупрямые задаются двумя своими точками ОА и ОВ, то мы будем обозначать угол символом или . В силу теоремы 4 любые два луча h и k , составляющие угол , определяют, и притом единственную, плоскость α.