Дипломная работа: Развитие понятия "Пространство" и неевклидова геометрия
III , 4. Пусть даны на плоскости α, прямая а’ на этой же или на какой-либо другой плоскости α’ и задана определённая сторона плоскости α’ относительно прямой а’. Пусть h ’ – луч прямой а’, исходящий из некоторой точки О’. Тогда на плоскости α’ существует один и только один луч k ’ такой, что конгруэнтен , и при этом все внутренние точки лежат по заданную сторону от прямой а’. Каждый угол конгруэнтен самому себе.
III , 5. Пусть А, В и С – три точки, не лежащие на одной прямой, А’, B ’ и С’ – другие три точки, также не лежащие на одной прямой. Тогда если отрезок АВ конгруэнтен отрезку А’ B ’, отрезок АС конгруэнтен отрезку А’ C ’ и конгруэнтен , то конгруэнтен и конгруэнтен
Договоримся теперь о сравнении неконгруэнтных отрезков и углов.
Будем говорить, что отрезок АВ больше отрезка А’B’, если на прямой, определяемой точками А и В, найдётся лежащая между этими точками точка С такая, что отрезок АС конгруэнтен отрезку А’В’. Будем говорить, что отрезок АВ меньше отрезка А’B’, если отрезок А’B’ больше отрезка АВ.
Символически тот факт, что отрезок АВ меньше отрезка А’B’ (конгруэнтен отрезку А’B’) будем записывать так:
АВ<A’B’ (AB=A’B’).
Будем говорить, что больше , если в плоскости, определяемой , найдётся луч ОС, все точки которого являются внутренними точками , такой, что конгруэнтен . Будем говорить, что меньше , если больше .
С помощью аксиом принадлежности, порядка и конгруэнтности можно доказать целый ряд теорем элементарной геометрии. Сюда относятся: 1) три широко известные теоремы о конгруэнтности (равенстве) двух треугольников, 2) теорема о конгруэнтности вертикальных углов, 3) теорема о конгруэнтности всех прямых углов, 4) теорема о единственности перпендикуляра, опущенного из точки на прямую, 5) теорема о единственности перпендикуляра, проведённого к данной точке прямой, 6) теорема о внешнем угле треугольника, 7) теорема о сравнении перпендикуляра и наклонной.
IV . Аксиомы непрерывности
С помощью аксиом принадлежности, порядка и конгруэнтности мы произвели сравнение отрезков, позволяющее заключить, каким из трёх знаков <, = или > связаны эти отрезки.
Указанных аксиом, однако, недостаточно 1) для обоснования возможности измерения отрезков, позволяющее поставить в соответствие каждому отрезку определённое вещественное число, 2) для обоснования того, что указанное соответствие является взаимно однозначным.
Для проведения такого обоснования следует присоединить к аксиомам I, II и IIIдве аксиомы непрерывности.
IV , 1 (аксиома Архимеда). Пусть АВ и С D – произвольные отрезки. Тогда на прямой, определ?