Дипломная работа: Розробка алгоритму та програми чисельного розвязку систем лінійних алгебраїчних рівнянь з розрідженою

Висновки

Перелік посилань

Додаток А


Перелік умовних скорочень і термінів

1. Умовні скорочення

МСЕ – метод скінчених елементів.

СЛАР – система лінійних алгебраїчних рівнянь.

2. Терміни

Розмірність матриці – кількість невідомих в матриці.

Розріджена матриця – матриця, в якій більшість елементів дорівнює нулю.

Оперативна пам'ять – енергозалежний вид пам'яті комп'ютера, в якій зберігаються дані, необхідні процесору в даний час.

Крайова задача – система диференціальних рівнянь з визначеними лінійними співвідношеннями між значеннями шуканих функцій на кінцях інтервала інтегрування.


Вступ

Зараз у зв'язку з бурхливим розвитком обчислювальних засобів широке поширення одержали інформаційні технології, що мають різноманітну теоретичну і прикладну спрямованість. Серед них особливе місце займають системи автоматизованого проектування (САПР), невід'ємну частину яких становлять підсистеми математичного моделювання різних фізичних процесів. Одним із самих перспективних напрямків розвитку математичного моделювання є широке використання чисельних методів, таких як метод скінчених елементів (МСЕ). Це чисельний метод для диференціальних рівнянь, що зустрічаються у фізиці [1]. Виникнення цього методу пов'язане з розв’язком задач космічних досліджень. Уперше він був опублікований у роботі Тернера, Клужа, Мартіна і Топпа. Ця робота сприяла появі інших робіт; був опублікований ряд статей із застосуванням методу скінчених елементів до задач будівельної механіки і механіки суцільних середовищ. Важливий внесок у теоретичну розробку методу зробив в 1963 р. Мелош, який показав, що метод скінчених елементів можна розглядати як один з варіантів добре відомого методу Релєя-Рітца. У будівельній механіці метод скінчених елементів мінімізацією потенційної енергії дозволяє звести задачу до системи лінійних рівнянь рівноваги [2,3].

Однією з існуючих труднощів, що виникають при чисельній реалізації розв’язку контактних задач теорії пружності методом скінчених елементів, є розв’язоксистем лінійних алгебраїчних рівнянь (СЛАР) великої розмірності виду . За умови зберігання всіх елементів матриці A в оперативній пам'яті навіть комп'ютер з 24 ГБ оперативної пам'яті здатен вирішити СЛАР з кількістю невідомих не більше56755. Якщо ж невідомих більше, доведеться залучати суперкомп'ютер. Тому актуальною є проблема знаходження схеми компактнішого зберігання матриці СЛАР в оперативній пам'яті.

Зараз розроблена велика кількість програмних систем, що автоматизують різні аспекти чисельного моделювання проблем механіки (ANSYS, COSMOS, FORTU, МІРЕЛА, ПОЛЕ, ПРОЧНОСТЬ і ін.).

Одним з головних блоків усіх цих систем є модуль, відповідальний за розв’язок СЛАР. Слід зазначити, що звичайно розв’язок СЛАР займає більшість часу розрахунку задачі на комп'ютері. Крім того, від цього етапу прямо залежить якість і точність розв’язку задачі в цілому. Тому від вибору методу розв’язку СЛАР і алгоритму його реалізації багато в чому залежить подальший успіх чисельного розрахунку задачі МСЕ.

Більшість існуючих методів розв’язку СЛАР в МСЕ розроблені в припущенні того, що матриця A має стрічкову структуру, причому ширина стрічки m<<n, де n×n– розмірність A. Однак, при використанні МСЕ для чисельного розв’язку контактних задач можливі випадки, коли ширина стрічки m→n.


1. Огляд методів розв’язку СЛАР, що виникають у МСЕ

У процесі побудови дискретних аналогів крайових задач виникають великі системи в загальному випадку нелінійних алгебраїчних рівнянь, які вирішуються у два етапи: на першому етапі вони линеаризуються, а потім отримана система лінійних рівнянь вирішується за допомогою якого-небудь методу лінійної алгебри. Якщо збіжність не досягнута, то процес повторюється.

Основна ідея методу скінчених елементів полягає в тому, що будь-яку неперервну величину, таку як температура, тиск і переміщення, можна апроксимувати дискретною моделлю, яка будується на множині кусочно-неперервних функцій, визначених на кінцевім числі підобластей. Кусочно-неперервні функції визначаються за допомогою значень неперервної величини в кінцевім числі точок розглядаємої області [1,2,3].

У загальному випадку, неперервна величина заздалегідь невідома, і потрібно визначити значення цієї величини в деяких внутрішніх точках області. Дискретну модель, однак, дуже легко побудувати, якщо спочатку припустити, що числові значення цієї величини в кожній внутрішній точці області відомі. Після цього можна перейти до загального випадку. Отже, при побудові конкретної моделі неперервної величини роблять наступним чином:

а) у розглядаємій області фіксується кінцеве число точок. Ці точки називаються вузловими точками або просто вузлами;

б) значення неперервної величини в кожній вузловій точці вважається змінною, яка повинна бути визначена;

в) область визначення неперервної величини розбивається на кінцеве число підобластей, називаних елементами. Ці елементи мають загальні вузлові точки і у сукупності апроксимують форму області;

г) неперервна величина апроксимується на кожному елементі функцією, яка визначається за допомогою вузлових значень цієї величини. Для кожного елемента визначається своя функція, але функції підбираються таким чином, щоб зберігалася неперервність величини уздовж границь елемента.

Способи розв’язку СЛАР, застосовувані разом із МСЕ, можна умовно розбити на дві групи: прямі (точні) і ітераційні (наближені). Прийнято вважати, що прямі методи найбільш ефективні при рішенні СЛАР невисоких порядків (не більше 105 невідомих), а ітераційні – для розв’язку СЛАР великих і надвеликих систем (понад 105 невідомих).

Якщо всю матрицю коефіцієнтів СЛАР вдається розмістити в пам'яті, то розв’язок такої системи не представляє якої-небудь складності. Однак на практиці часто доводиться мати справу з матрицями, розміри яких суттєво перевищують об'єм оперативної пам'яті комп'ютера. У таких випадках і доводиться використовувати різні модифікації як прямих, так і ітераційних методів.

Остаточне рішення про застосування прямих або ітераційних методів розв’язку СЛАР необхідно ухвалювати на основі аналізу структури досліджуваної математичної задачі. Прямі методи розв’язку СЛАР вигідніше використовувати, якщо необхідно розв’язувати багато однакових систем з різними правими частинами, або якщо матриця А не є додатньо-визначеною. Крім того, існують задачі з такою структурою матриці, для якої прямі методи завжди кращі, ніж ітераційні.

1.1 Точні методи розв’язку СЛАР

Розглянемо ряд точних методів розв’язку СЛАР [4,5].

1.1.1 Метод Гауса

Нехай дана система , де A – матриця розмірності m×m (квадратна). У припущенні, що a11 ≠0, перше рівняння системи


К-во Просмотров: 324
Бесплатно скачать Дипломная работа: Розробка алгоритму та програми чисельного розвязку систем лінійних алгебраїчних рівнянь з розрідженою