Дипломная работа: Структурный синтез D-элементов и лестничных arc-схем

, (15)

, (16)

, (17)

, (18)

где , .

Следовательно, для получения приведенных выше скалярных соотношений необходимо оперировать матрицами, размерность которых согласована с числом активных и пассивных элементов одного D-элемента.

3. Частотные свойства структурных схем

Площади усиления и статический коэффициент передачи ОУ, входящих в состав D-элементов, не только изменяют коэффициенты передаточной функции, но и повышают ее порядок, что изменяет положение нулей и полюсов и, следовательно, изменяет ожидаемые характеристики и параметры проектируемого устройства. Для учета этого эффекта можно воспользоваться соотношением (7). Тогда, если

, , (19)

несложно получить

, (20)

. (21)


Полученные соотношения показывают, что уменьшение указанного выше влияния возможно двумя основными способами. В первом случае необходимо увеличивать частоту единичного усиления и коэффициент передачи всех активных элементов. Этот способ является традиционным и связан с ужесточением технологических норм изготовления полупроводниковых компонентов интерфейсных схем. В рамках второго способа решения задачи синтезируются структуры с минимальными вещественными и мнимыми составляющими локальных функций и произведений . Схемы, обладающие такими свойствами, в соответствии с [6], уместно назвать схемами с собственной компенсацией влияния технологических погрешностей изготовления активных элементов. При этом, как это следует из приведенных соотношений, возможны два основных случая. Во-первых, для различных ОУ локальные передаточные функции могут характеризоваться различными знаками, имеющими суммарное (взаимное) влияние на знаменатель передаточной функции. Аналогичный вывод характерен и для числителя, однако здесь необходимо дополнительно рассматривать произведение локальных передаточных функций и . Следовательно, целенаправленному изменению могут подвергаться как функция , так и . Во-вторых, аналогичный эффект достигается минимизацией всех указанных локальных передач в рабочем диапазоне частот. В этом случае согласования численных значений Pj и m j не требуется.

При микроэлектронной реализации, в частности на БМК, частота единичного усиления и статический коэффициент передачи ОУ оказываются практически идентичными, поэтому при решении целого класса практических задач можно совмещать как собственную, так и взаимную компенсации влияния этих технологических погрешностей на результирующие характеристики проектируемого устройства.

Из соотношения (14) следует, что локальные передаточные функции , характеризующие влияние ОУ на знаменатель передаточной функции, являются диагональными элементами матрицы (15). В силу того, что базовые D-элементы содержат два ОУ [3], поставленная задача связана с формированием ведущих миноров матрицы второго порядка

(22)

и может решаться простым перебором альтернативных вариантов соединения активных и пассивных элементов.

Аналогичные условия могут быть сформулированы и для матриц (16) и (17), компоненты которых определяют локальные передаточные функции и .

С отмеченных позиций рассмотрим частотные свойства устойчивых D-элементов [3], принципиальные схемы которых в режиме звена второго порядка приведены на рис. 5–6.

Рис. 5. Звено Антонио с резистивной нагрузкой

Рис. 6. Звено Антонио с емкостной нагрузкой


Рис. 7. Звено Брутона с резистивной нагрузкой

Рис. 8. Звено Брутона с емкостной нагрузкой

Учитывая, что для всех схем , , в соответствии с таблицей 1, матрицы частотозависимых цепей будут иметь следующий вид

; ; , (23)

К-во Просмотров: 220
Бесплатно скачать Дипломная работа: Структурный синтез D-элементов и лестничных arc-схем