Дипломная работа: Структурный синтез D-элементов и лестничных arc-схем
, (41)
, (42)
. (43)
Настоящие преобразования приводят к векторному сигнальному графу, показанному на рис. 10.
Из рассмотрения векторного сигнального графа следует важный в теоретическом отношении вывод – изменение локальных передач , и
при фиксированной передаточной функции идеализированной схемы возможно тогда и только тогда, когда дифференциальный вход j-го активного элемента связывается с дополнительным входом схемы. Введем вектор
, (44)
где .
Рис. 10. Векторный сигнальный граф обобщенной структуры при влиянии j-го активного элемента
В этом случае структура будет иметь систему уравнений
(45)
решение которой приводит к следующему результату:
, (
). (46)
При обращении матрицы Q воспользуемся методом пополнения [8], тогда
. (47)
Следовательно, передаточная функция структуры
, (48)
где
,
(49)
обеспечивают изменение только локальных функций и
, сохраняя при этом неизменными передаточную функцию идеализированной структуры
и передаточную функцию на выходе j-го активного элемента. Изменение знака в (49), как это видно из (44), достигается за счет дифференциальных свойств активных элементов. Полученный результат имеет достаточно простую физическую трактовку. При идеальном активном элементе (
) дифференциальный входной сигнал
не зависит от частоты, а в случае использования ОУ с
этот сигнал равен нулю, и дополнительный контур обратной связи прекращает свое действие, что в конечном итоге и сохраняет неизменными локальную функцию
и передаточную функцию всего устройства.
Таким образом, полученные топологические условия собственной компенсации являются достаточными.
В этом случае соотношение (7) в части влияния j-го активного элемента конкретизируется:
. (50)
структурный схема алгоритм
Для сохранения функций (43) необходимо оставить неизменными не только матрицу , но и набор векторов Т, А,
. Создание параллельного пути передачи от узла
к выходу схемы возможно только его соединением с дополнительным входом схемы и, следовательно, с входами активных элементов.
Ответ на вопрос об уровне компенсации в общем случае остается открытым, т.к. зависит от структуры матрицы и вектора
, а также во многом зависит от числа неиспользованных входов активных элементов. Кроме этого, практическое применение полученного результата связано с выполнением ряда параметрических условий, учитывающих также частотную зависимость компонент матрицы
. Учитывая соотношения (40)–(42), матрица
заменяется на ее клеточные эквиваленты. Из процедур Фробениуса [12] следует, что в этом случае не существует более конкретных условий, позволяющих в матричной форме дополнить топологические условия функциональными, т.к. число активных элементов и порядок фильтра в общем случае не одинаковы, и блочные компоненты матрицы (10) оказываются несогласованными. В этой связи практическое использование настоящих результатов связано с анализом структур поправочных полиномов электронных систем различного класса.
В ряде случаев выполнение параметрических условий минимизации
и
(51)
может привести к нарушению принципа пассивности компонент вектора и, следовательно, к необходимости применения дополнительных активных элементов, выполняющих в сложных схемах также функции сумматоров и масштабирующих усилителей. Их влияние на передаточную функцию и иные показатели качества устройства учитывается в соответствии с изложенной выше методикой. Однако, как это будет показано ниже, для некоторых классов и, в частности, для звеньев второго порядка, вклад вводимого активного элемента несоизмеримо ниже основных.