Дипломная работа: Теория остатков
4. преобразовывают некоторые конструктивные объекты.
Между операторами алгоритма и операциями (элементарными действиями) алгоритмического процесса существует гомоморфное соответствие. Поэтому алгоритм следует также считать моделью алгоритмического процесса». (А. Копаев)
Формальные признаки алгоритмов
Различные определения алгоритма в явной или неявной форме содержат следующий ряд общих требований:
· детерминированность — определённость. В каждый момент времени следующий шаг работы однозначно определяется состоянием системы. Таким образом, алгоритм выдаёт один и тот же результат (ответ) для одних и тех же исходных данных. В современной трактовке у разных реализаций одного и того же алгоритма должен быть изоморфный граф. С другой стороны, существуют вероятностные алгоритмы, в которых следующий шаг работы зависит от текущего состояния системы и генерируемого случайного числа.
· понятность — алгоритм для исполнителя должен включать только те команды, которые ему (исполнителю) доступны, которые входят в его систему команд.
· завершаемость (конечность) — при корректно заданных исходных данных алгоритм должен завершать работу и выдавать результат за конечное число шагов. С другой стороны, вероятностный алгоритм может и никогда не выдать результат, но вероятность этого равна 0.
· массовость — алгоритм должен быть применим к разным наборам исходных данных.
Современное формальное определение алгоритма было дано в 30-50-х гг. XX века в работах Тьюринга, Поста, Чёрча (тезис Чёрча — Тьюринга), Н. Винера, А. А. Маркова.
1.2 Алгоритм Евклида
Определение. Число d Z , делящее одновременно числа а , b , c , ... , k Z , называется общим делителем этих чисел. Наибольшее d с таким свойством называется наибольшим общим делителем. Обозначение: d = ( a , b , c , ..., k ) .
Теорема . Если ( a , b ) = d , то найдутся такие целые числа u и v , что d = au + bv .
Доказательство . Рассмотрим множество P = { au + bv u,v Z }. Очевидно, что P Z , а знатоки алгебры могут проверить, что P – идеал в Z . Очевидно, что a , b , 0 P . Пусть x , y P и y 0 . Тогда остаток от деления x на y принадлежит P . Действительно:
x = yq + r , 0 r < y ,
r = x – yq = ( au 1 + bv 1 ) – ( au 2 + bv 2 ) q = a ( u 1 – u 2 q )+ b ( v 1 – v 2 q ) P .
Пусть d P - наименьшее положительное число из P (призадумайтесь, почему такое имеется!). Тогда а делится на d . В самом деле, a = dq + r 1 , 0 r 1 < d , a P , d P , значит r 1 P , следовательно r 1 = 0. Аналогичными рассуждениями получается, что b делится на d , значит d - общий делитель a и b .
Далее, раз d P , то d = au 0 + bv 0 . Если теперь d 1 - общий делитель a и b , то d 1 | ( au 0 + bv 0 ), т.е. d 1 | d . Значит d d 1 и d - наибольший общий делитель.
Определение. Целые числа a и b называются взаимно простыми, если (a , b ) = 1.
Вспоминая свойство 1 из предыдущего пункта, легко заметить, что два числа a и b являются взаимно простыми тогда и только тогда, когда найдутся целые числа u и v такие, что au + bv = 1.
Пусть даны два числа a и b ; a 0, b 0, считаем, что a > b . Символом := в записи алгоритма обозначаем присваивание. Алгоритм:
1. Ввести a и b .
2. Если b = 0 , то Ответ: а . Конец .
a = bq 1 + r 1 b = r 1 q 2 + r 2 r 1 = r 2 q 3 + r 3 r 2 = r 3 q 4 + r 4 |
0 r 1 < b 0 r 2 < r 1 0 r 3 < r 2 0 r 4 < r 3 |
К-во Просмотров: 557
Бесплатно скачать Дипломная работа: Теория остатков
|