Дипломная работа: Возвратные задачи
Выполнила:
студентка V курса математического факультета
Ковязина Юлия Николаевна
Научный руководитель:
кандидат физико-математических наук, доцент кафедры алгебры и геометрии И.А.Семенова
Рецензент:
ст. преподаватель кафедры алгебры и геометрии
А.Н.Семенов
Допущена к защите в государственной аттестационной комиссии
«___» __________2005 г. Зав. Кафедрой Е.М. Вечтомов
«___»___________2005 г. Декан факультета В.И. Варанкина
Киров 2005
Содержание
Введение................................................................................................... 3
Глава 1..................................................................................................... 6
1.1 Задача о ханойской башне ......................................................... 6
1.2 Задача о разрезании пиццы........................................................ 7
1.3 Задача Иосифа Флавия............................................................. 10
Глава 2. Решение задач......................................................................... 19
Заключение............................................................................................ 41
Библиографический список................................................................... 42
Введение
Дискретная математика в настоящее время играет большую роль в разработке принципов работы компьютера, т.к. работа компьютера представляет собой выполнение последовательности дискретных шагов, приводящих к решению поставленной перед компьютером задачи.
Рассмотренная мною тема «Возвратные задачи» является небольшой частью дискретной математики, поэтому данная тема на сегодняшний момент является не менее актуальной.
Цель моей работы – изучить имеющийся теоретический и практический материал по данной теме и применить его к решению задач.
Данная работа состоит из введения, двух глав и заключения. Во введении приводятся примеры рекуррентных соотношений, с помощью которых можно задать некоторые последовательности, а так же рекуррентные соотношения, которые могут использоваться при решении задач. В первой главе описываются три задачи: задача о ханойской башне, задача о разрезании пиццы и задача Иосифа Флавия, а также доказываются некоторые факты, которые в литературе предлагаются для самостоятельного доказательства. Вторая глава посвящена решению задач на данную тему. В заключении делаются выводы о проделанной работе и указываются дальнейшие перспективы.
В основе решения возвратных задач лежит идея возвратности (или рекуррентности), согласно которой решение всей задачи зависит от решения той же самой задачи меньших размеров.
Тема «Возвратные последовательности» не является изолированной, нигде не используемой теорией. Наоборот, возвратные последовательности близки к школьному курсу математики (арифметическая и геометрическая прогрессии, последовательности квадратов и кубов натуральных чисел и т.д.), используются в высшей алгебре, геометрии, математическом анализе и других математических дисциплинах. Теория возвратных последовательностей составляет особую главу математической дисциплины, называемой исчислением конечных разностей; представляет собой частную главу о последовательностях.
Таким образом, возвратные последовательности являются настоящей маленькой теорией, законченной, простой, ясной.
Определение: Пусть имеется последовательность {un }:
u1 , u2 , u3 ,…, un , … (1)
Если существует натуральное число k и числа a1 , a2 , a3 , …,ak (действительные или мнимые) такие что, начиная с некоторого номера n и для всех следующих номеров
un+k =a1 ∙un+k-1 + a2 ∙un+k-2 +…+ak ∙un при n ≥ 1 (2)
то последовательность (1) называется возвратной последовательностью порядка k , а соотношение (2) – возвратным (рекуррентным) уравнением порядка k.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--