Книга: Уравнение линии на плоскости

5. Найти экстремумы и интервалы монотонности функции.

6. Найти интервалы выпуклости функции и точки перегиба.

7. Найти точки пересечения с осями координат и, возможно, некоторые дополнительные точки, уточняющие график.

Дифференциалом функции называется главная, линейная относительно часть приращения функции, равная произведению производной на приращении независимой переменной.

Пусть имеется переменных величин, и каждому набору их значений из некоторого множества Х соответствует одно вполне определенное значение переменной величины . Тогда говорят, что задана функция нескольких переменных .

Переменные называются независимыми переменными или аргументами, - зависимой переменной. Множество Х называется областью определения функции.

Многомерным аналогом функции полезности является функция , выражающая зависимость от приобретенных товаров.

Также на случай переменных обобщается понятие производственной функции, выражающей результат производственной деятельности от обусловивших его факторов .

Функцию двух переменных будем обозначать . Ее область определения есть подмножество координатной плоскости. Окрестностью точки называется круг, содержащий точку .

Число называется пределом функции при и (или в точке ), если для любого малого числа найдется число (зависящее от ), такое, что для всех точек , отстоящих от точек на расстояние меньшее, чем , выполняется неравенство .

Обозначается предел так; .

Функция называется непрерывной в точке , если она

1. определена в точке

2. имеет конечный предел при и

3. этот предел равен значению функции в точке, то есть .

Величина называется полным приращением функции в точке . Если задать приращение только одной какой-либо переменной то получается частное приращение. Частной производной функции нескольких переменных по одной из этих переменных называется предел отношения соответствующего частного приращения функции к приращению рассматриваемой независимой переменной при стремлении последнего к нулю (если этот предел существует). Таким образом, для функции по определению


.

Дифференциалом функции называется сумма произведений частных производных этой функции на приращения соответствующих независимых переменных, то есть

или .

Функция называется дифференцируемой в точке , если ее полное приращение может быть представлено в виде , где

– бесконечно малые при.

Теорема. Если частные производные и функции существуют в окрестности точки и непрерывны в самой точке , то функция дифференцируема в этой точке.

Градиентом функции называется вектор . Градиент функции в данной точке характеризует направление максимальной скорости изменения функции в этой точке.

Точка называется точкой максимума (минимума) функции , если существует окрестность точки , такая, что для всех точек из этой окрестности выполняется неравенство


Теорема. Пусть точка – есть точка экстремума дифференцируемой функции . Тогда частные производные и в этой точке равны нулю.

Равенство частных производных нулю выражает лишь необходимое, но недостаточное условие экстремума функции нескольких переменных.

Если частные производные и сами являются дифференцируемыми функциями, то можно определить также и их частные производные, которые называются частными производными второго порядка.

К-во Просмотров: 355
Бесплатно скачать Книга: Уравнение линии на плоскости