Контрольная работа: Длина дуги кривой в прямоугольных координатах

Контрольная работа

По дисциплине:

«Высшая математика»

Тема:

«Длина дуги кривой в прямоугольных координатах»


1 . Производная определенного интеграла по переменному верхнему пределу

Сформулируем следующее свойство определенных интегралов:

Пусть функция непрерывна на . Составим для нее определенный интеграл . Пусть для определенности на всем отрезке. Тогда с геометрической точки зрения составленный интеграл не что иное, как площадь криволинейной трапеции с основанием , которая ограничена линией .

Если в рассматриваемом интеграле заменить переменную интегрирования на , то величина его, очевидно, не изменится. Поэтому в дальнейшем для удобства будем считать, что площадь трапеции определяется интегралом .

Величина определенного интеграла зависит от значений верхнего и нижнего пределов интегрирования, то есть от длины основания криволинейной трапеции. Рассмотрим поэтому теперь случай, когда нижний предел интеграла фиксирован и равен , а верхний может меняться, принимая значения , где . В этом случае определенный интеграл будет соответствовать площади криволинейной трапеции, величина которой меняется. Зависеть эта площадь будет от значения , то есть . Если будет меняться непрерывно, то и площадь трапеции будет меняться непрерывно, то есть – непрерывная функция, которую можно дифференцировать.

Теорема. Производная определенного интеграла по переменному верхнему пределу равна подынтегральной функции, у которой переменная интегрирования заменена этим верхним пределом, то есть или .

Для вычисления производной проделаем все стандартные операции. Зададим приращение аргументу: , что, в свою очередь, приведет к приращению функции: . Так как , а , то приращение функции определяется выражением:

.

Применим к полученному выражению теорему о среднем в определенном интеграле:

, где .


Составим отношение . Чтобы получить производную , перейдем в составленном отношении к пределу: . Так как , то при стремлении точка будет стремиться к . Следовательно, вычисление предела приведет к выражению: .

Из доказанной теоремы следует, что – это первообразная от , следовательно, определенный интеграл также является первообразной от , и вычислять его, очевидно, необходимо с помощью тех же приемов, что и неопределенный интеграл.

2 . Формула Ньютона–Лейбница

Вычисление определенного интеграла как предела интегральной суммы представляет собой довольно сложную задачу и может быть выполнено лишь в некоторых наиболее простых случаях. Однако полученная в п. 1 связь между определенным интегралом и первообразной позволяет получить простой метод для вычисления этих интегралов.

Теорема. Если какая-либо первообразная от непрерывной функции , то справедлива формула: .

В предыдущем пункте было показано, что – это первообразная от функции . Но как было показано при изучении неопределенного интеграла, любая непрерывная функция имеет бесконечное множество первообразных, отличающихся друг от друга на постоянное слагаемое. Поэтому, если какая-то другая первообразная от той же функции , то .

Оказывается, что в случае определенного интеграла постоянную можно вычислить. Действительно, так как может принимать любые значения между и (п. 1), то пусть . Тогда: . Но определенный интеграл с равными пределами равен нулю, следовательно, . Значит,

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 215
Бесплатно скачать Контрольная работа: Длина дуги кривой в прямоугольных координатах