Контрольная работа: Двоїста задача лінійного програмування: економічна інтерпретація знаходження оптимальних планів
max F = –5x1 + 2x2;
Розв’язання. Перш ніж записати двоїсту задачу, необхідно пряму задачу звести до стандартного вигляду. Оскільки цільова функція F максимізується і в системі обмежень є нерівності, то вони мусять мати знак «». Тому перше обмеження задачі помножимо на (–1). Після цього знак нерівності зміниться на протилежний. Отримаємо:
max F = –5x1 + 2x2;
Тепер за відповідними правилами складемо двоїсту задачу:
;
Або схематично (використовуючи компоненти векторів та матриць) зв’язок між парою цих задач можна зобразити так:
До заданої задачі лінійного програмування записати двоїсту.
Розв’язання. Пряму задачу зведемо до стандартного вигляду. Оскільки цільова функція F мінімізується і в системі обмежень є нерівності, то вони мають бути виду «». Тому друге обмеження задачі необхідно помножити на (–1). При цьому знак нерівності зміниться на протилежний. Отримаємо:
Двоїста задача:
Оскільки перше обмеження початкової задачі є рівнянням, то відповідна йому змінна двоїстої задачі може набувати як додатного, так і від’ємного значення.
3. Основні теореми двоїстості та їх економічний зміст
Зв’язок між оптимальними розв’язками прямої та двоїстої задач встановлюють леми та теореми двоїстості. Розглянемо задачі (3.1) – (3.3) та (3.4) – (3.6) з економічною інтерпретацією.
Якщо та – допустимі розв’язки відповідно прямої та двоїстої задач, то виконується нерівність
або . (3.7)
Доведення. Помножимо кожне рівняння системи (3.2) на відповідну змінну двоїстої задачі:
Підсумувавши праві і ліві частини нерівностей, отримаємо:
. (3.8)
Аналогічно перетворимо систему обмежень (3.5) двоїстої задачі: