Контрольная работа: Эконометрика 3
4
9,6
0,43
0,59
5
9,6
0,39
0,16
2.2.2. Матричная форма записи ЛММР:
Y^ = X* A^ (1), где А^ – вектор-столбец параметров регрессии ;
хi 1 , хi 2 – предопределенные (объясняющие) переменные, n = 2;
Ранг матрицы X = n + 1= 3 < k = 5 (2).
Исходные данные представляют в виде матриц.
( 1 0,32 0,14 ) (9,7)
( 1 0,59 0,66 ) ( 8,4
X = ( 1 0,3 0,31 ) Y = (9,3 )
( 1 0,43 0,59 ) (9,6)
(1 0,39 0,16 ) (9,6)
Значение параметров А^ = (а0 , а1 , а 2 ) T и s2 – нам неизвестны и их требуется определить ( статистически оценить ) методом наименьших квадратов.
Для нахождения параметров A^ применим формулу (3) задачи № 1
A^ = (XT * X ) –1 * XT * (3),
где (XT * X ) –1 - обратная матрица.
2.2.3. Решение.
а) Найдем транспонированную матрицу ХТ :
( 1 1 1 1 1 )
XT = ( 0,32 0,59 0,38 0,43 0,39 )
( 0,14 0,66 0,53 0,59 0,13 ).
в) Находим произведение матриц XT *X :
( 5 2,11 2,05 )