Контрольная работа: Економіко-математичне програмування

4y1 +2y2 +7y3 ≤2

10y1 +11y2 +32y3 => max

y1 ≥ 0

y2 ≥ 0

y3 ≤ 0

Рішення двоїстої задачі дає оптимальну систему оцінок ресурсів.

Використовуючи останню ітерацію прямої задачі знайдемо, оптимальний план двоїстої задачі.

З першої теореми двоїстості випливає, що Y = C*A-1 .

Складемо матрицю A з компонентів векторів, що входять в оптимальний базис.

Визначивши зворотну матрицю А-1 черезалгебраїчнідоповнення, отримаємо:

Як видно з останнього плану симплексного таблиці, зворотна матриця A-1 розташована в стовпцях додаткових змінних.

Тогда Y = C*A-1 =

Оптимальний план двоїстоїзадачідорівнює:

y1 = 0

y2 = 1

y3 = 0

Z(Y) = 10*0+11*1+32*0 = 11

Завдання 3

Розв’язати транспортну задачу.

1 4 2 1 2 300
2 2 3 1 3 90
3 4 5 6 7 70
100 20 70 90 180

Розв’язок

Побудова математичної моделі . Нехай xij — кількість продукції, що перевозиться з і -го пункту виробництва до j -го споживача . Перевіримо необхідність і достатність умоврозв'язання задачі:

Умова балансу дотримується. Запаси рівні потребам. Отже, модель транспортної задачі є закритою.

Занесемо вихідні дані у таблицю.

В1 В2 В3 В4 В5 Запаси
А1 1 4 2 1 2 300
А2 2 2 3 1 3 90
А3 3 4 5 6 7 70
Потреби 100 20 70 90 180

Розпочинаємо будувати математичну модель даної задачі:

Економічний зміст записаних обмежень полягає в тому, що весь вантаж потрібно перевезти по пунктах повністю.

Аналогічні обмеження можна записати відносно замовників: вантаж, що може надходити до споживача від чотирьох баз, має повністю задовольняти його попит. Математично це записується так:

К-во Просмотров: 330
Бесплатно скачать Контрольная работа: Економіко-математичне програмування