Контрольная работа: Економіко-математичні методи і алгоритми

,

де – кількість спостережень, ();

– кількість незалежних змінних, ();

– середня арифметична -ї незалежної змінної;

– дисперсія -ї незалежної змінної.

Результати нормалізації змінних , , подамо в таблиці:

1 0,45 10,94 5,995 -0,4207 -0,0593 -0,2458
2 1,12 8,21 6,125 0,0653 -0,4515 -0,2202
3 1,35 11,51 7,275 0,2321 0,0226 0,0059
4 1,43 10,59 6,805 0,2901 -0,1096 -0,0865
5 1,26 14,42 10,475 0,1668 0,4408 0,6351
6 1,63 14,62 9,275 0,4352 0,4695 0,3991
7 0,92 9,24 6,025 -0,0798 -0,3035 -0,2399
8 1,08 13,06 8,255 0,0363 0,2453 0,1986
9 1,43 12,97 8,375 0,2901 0,2324 0,2222
10 0,62 11,71 6,775 -0,2974 0,0514 -0,0924
11 0,38 8,95 5,735 -0,4715 -0,3452 -0,2969
12 0,69 10,01 5,825 -0,2466 -0,1929 -0,2792

Побудуємо нову -матрицю, елементами якої є нормалізовані змінні , і обчислимо кореляційну матрицю:


,

де – матриця, транспонована до матриці (елементи матриці характеризують щільність зв’язку між двома незалежними змінними; () – парні коефіцієнти кореляції). Аналізуючи значення цих коефіцієнтів, робимо припущення, що між змінними і існує сильний зв’язок.

Знайдемо визначник кореляційної матриці : ; потім визначимо критерій :

.

Для ступенів свободи і рівня значущості табличне значення критерію . Оскільки обчислене значення більше за табличне, то в моделі присутня мультиколінеарність.

Складемо розрахункову таблицю для обчислення коефіцієнтів кореляції між факторами і показником:

Y X2 X3 Y2 X2 2 X3 2 YX2 YX3
1 3,08 10,54 5,495 9,4864 111,0916 30,19503 32,4632 16,9246
2 5,42 7,81 5,625 29,3764 60,9961 31,64063 42,3302 30,4875
3 7 11,11 6,775 49 123,4321 45,90063 77,77 47,425
4 7,16 10,19 6,305 51,2656 103,8361 39,75303 72,9604 45,1438
5 7,17 14,02 9,975 51,4089 196,5604 99,50063 100,5234 71,52075
6 8,5 14,22 8,775 72,25 202,2084 77,00063 120,87 74,5875
7 4,48 8,84 5,525 20,0704 78,1456 30,52563 39,6032 24,752
8 5,92 12,66 7,755 35,0464 160,2756 60,14003 74,9472 45,9096
9 7,83 12,57 7,875 61,3089 158,0049 62,01563 98,4231 61,66125
10 3,31 11,31 6,275 10,9561 127,9161 39,37563 37,4361 20,77025
11 1,67 8,55 5,235 2,7889 73,1025 27,40523 14,2785 8,74245
12 3,3 9,61 5,325 10,89 92,3521 28,35563 31,713 17,5725
Сума 64,84 131,43 80,94 403,848 1487,922 571,8083 743,3183 465,4972
Середнє 5,4033 10,9525 6,7450 33,6540 123,9935 47,6507 61,9432 38,7914

Обчислимо коефіцієнти кореляції:

;

Відповідно до обчислених коефіцієнтів кореляції, показник Y має тісніший зв’язок із змінною Х3 порівняно із змінною Х2 . Тому відкинемо фактор Х2 . Будемо розглядати модель Y=Y(X1 , X3 ).

Для припущення про вигляд залежності побудуємо діаграми розсіювання між показником та факторами, що залишилися в моделі.


Обчислимо оцінки параметрів множинної регресії у лінійній формі:

.

Відповідно до методу найменших квадратів (МНК) оператор оцінювання параметрів моделі має вигляд

,

де ; – матриця, транспонована до матриці . Матриця , крім двох векторів змінних Х1 та Х3 , містить вектор одиниць. Згідно з оператором оцінювання одержимо:

1) ;

2) ;

3) ;

4) .

К-во Просмотров: 273
Бесплатно скачать Контрольная работа: Економіко-математичні методи і алгоритми