Контрольная работа: Элементы статистической термодинамики
h/kT=4.588´10 - 20 Дж/9.6352´10-21 Дж=4.762
exp(-h/kT) = exp(-4.762) =0.00855;
q0V(I 2) = [1-exp(-h/kT)] -1=0.99145-1@1;
Показатель электронного сомножителя в константе равновесия:
DU0o/RT = - 9728/(8.314´698.2) = - 1.676
Сам электронный сомножитель в константе равновесия:
exp(-DU0o/RT) = exp(1.676) = 5.348
2) Константа равновесия
Число частиц за пробег реакции не изменятся Drn=0;
K=Kc=Kp= [Q0(H2)] - 1 [Q0(I2)] - 1 [Q0(HI)] 2; ®
Сокращается большинство численных коэффициентов и остаётся:
K= [M(HI) 2M(H2) - 1´M(I2) - 1] 3/2 ´ [I(HI) 2´I(H2) - 1´I(I2) - 1] ´ [s(H2) s (I2) /s (HI) 2] [´ [q0(HI)] 2´ [q0(H2)] - 1´ [q0(I2)] - 1´exp(-DU0o/RT);
Из набора молекулярных параметров играет роль множитель:
[M(HI) 2´M(H2) - 1´M(I2) - 1] 3/2´ [I(HI) 2/I(H2) ´I(I2)] ´ [s(H2) ´s (I2) /s (HI) 2] = [1292/(2.016´256)] 3/2´ [43.12/(4.597´7430)] ´(2´2/12) =0.031´18.136´4=183.1´0.0544´4=39.84.
Колебательные статистические суммы
[q0(HI)] –2 @ 1.
[q0(H2)] @1.
[q0(I2)] =2.80.
Электронный сомножитель:
exp(-DU0o/RT) = exp(1.676) = 5.348
Константа равновесия равна:
K=5.348´39.84/2.80=76.1.
Резюме:
Простота приближений и пренебрежение специфическими спиновыми эффектами ядер, приводят к выводу о том, что согласие теории и эксперимента очень хорошее. Отличие составляет всего 30%.
ЗАДАЧА 10. (Д-О 17.27)
Рассчитать статистическим методом константу равновесия и степень диссоциации H2(газ) при 3000 K и 1 атм. При этих условиях Лэнгмюр изучил протекающую в газовой фазе реакцию
H2 (газ) =2H (газ) и нашёл a=0.072. Учтите, что вследствие электронного спина основное состояние атома водорода дважды вырождено (gel=2).
РЕШЕНИЕ.
Предварительные вычисления