Контрольная работа: Финансовый риск как объект управления
Таким образом, для двух рассматриваемых проектов ожидаемые нормы доходности совпадают, несмотря на то, что диапазон возможных значений IRR сильно различается: у проекта А от -50% до 90%, у проекта В — от 15% до 25%.
Мы предположили, что возможны три состояния экономики: норма, спад и подъем. На самом же деле состояние экономики может варьироваться от самой глубокой депрессии до наивысшего подъема с бесчисленным количеством промежуточных положений. Обычно среднему (нормальному) состоянию соответствует самая большая вероятность, далее значения вероятностей равномерно уменьшаются при удалении от нормы как в одну (подъем), так и в другую (спад) сторону, стремясь к нулю в крайних положениях (полная депрессия и наибольший подъем). Если при этом величина доходности, соответствующая нормальному положению, является одновременно и средним арифметическим двух крайних значений, то мы получаем распределение, которое в теории вероятностей носит название «нормального» и графически изображается следующим образом (при том, что сумма всех вероятностей остается, естественно, равной единице):
Нормальное распределение достаточно полно отражает реальную ситуацию и дает возможность, используя ограниченную информацию, получать числовые характеристики, необходимые для оценки степени риска того или иного проекта. Далее будем всегда предполагать, что мы находимся в условиях нормального распределения вероятностей.
Предполагается, что для проекта А в наихудшем случае убыток не составит более 50%, а в наилучшем случае доход не превысит 90%. Для проекта В — 15% и 25% соответственно. Очевидно, что тогда значение ЕRR останется прежним (20%) для обоих проектов, совпадая со значением среднего состояния. Соответствующая же среднему значению вероятность понизится, причем не одинаково в наших двух случаях.
Р
20 90 ERR
Рис. 3. Распределение вероятностей для проектов А и В
Очевидно, чем более «сжат» график, тем выше вероятность, соответствующая среднему ожидаемому доходу (ЕRR), и вероятность того, что величина реальной доходности окажется достаточно близкой к ЕRR. Тем ниже будет и риск, связанный с соответствующим проектом. Поэтому меру «сжатости» графика можно принять за достаточно корректную меру риска.
Меру «сжатости» определяет величина, которая в теории вероятности носит название «среднеквадратичного отклонения» —σ— и рассчитывается по следующей формуле:
σ = ∑(IRRi - IRR)²pi (1.2)
Чем меньше величина а, тем больше «сжато» соответствующее распределение вероятностей, и тем менее рискован проект. При этом для нормального распределения вероятность «попадания» в пределы ERR ± σ составляет 68,26%.
Рассчитаем значение σ для рассматриваемых проектов А и В. Проект А:
σ = (90 - 20)2 0,25 + (20 - 20)2 0,5 + (-50 - 20)2 0,25 = 49,5%.
Проект В: ________________
σ = (25 - 20)2 0,25 + (20 - 20)2 0,5 + (15 - 20)2 0,25 = 3,5%.
Как видим, для второго проекта с вероятностью 68,26% можно ожидать величину доходности IRR= 20% + 3,5%, т.е. от 16,5% до 23,5%. Риск здесь минимальный. Проект А гораздо более рискованный. С вероятностью 68,26% можно получить доходность от —29,5% до 69,5%. Считается, что среднерискованной операции соответствует значение σ около 30%.
В рассмотренном примере распределение вероятностей предполагалось известным заранее. Во многих ситуациях бывают доступны лишь данные о том, какой доход приносила некая финансовая или хозяйственная операция в предыдущие годы.
Например, доступная информация может быть представлена в следующем виде (см. табл. 3).
Таблица 3. Динамика 1КК
Год |
IRR |
1995 |
10% |
1996 |
8% |
1997 |
0 |
1998 |
15% |
В этом случае для расчета среднеквадратичного отклонения σ используется такая формула