Контрольная работа: Идентификация объекта управления

В современных сложных объектах, как правило, выходной сигнал объекта зависит не от одного входного сигнала, как в случае с кривой разгона, а от нескольких входных сигналов, т.е. объект управления имеет сложное переплетение взаимосвязей входных и выходных сигналов.

Рис. 1. Схема объекта, состоящего из нескольких взаимосвязанных входных-выходных сигналов

Для идентификации таких сложных объектов используется метод регрессионного анализа с проведением активного эксперимента на базе теории математического планирования эксперимента.

Назначение этой теории – значительно сократить количество экспериментальных опытов и упростить расчеты, необходимые для получения уравнения взаимосвязи выходного сигнала с несколькими входными сигналами – уравнения регрессии.

Сокращение числа необходимых экспериментов в теории математического планирования эксперимента достигается за счет одновременного изменения всех входных сигналов (факторов), а упрощение расчетов получается за счет того, что изменение входных сигналов (факторов) нормируется, т.е. величины . Пусть – зависит от 2-х входных факторов.


Рис. 2. Схема исследования объекта методом регрессионного анализа для двух входных сигналов (факторов)

Точка О – номинальный режим работы объекта. Нормализация происходит за счет того, что начало координат переносится в точку О на .

Рис. 3. Схема центрального плана полного факторного эксперимента для двух входных сигналов (факторов)

Здесь (рис. 3) изображен план проведения опытов для изучения зависимости . Число опытов равно 4=22 – полный факторный эксперимент; Для k входных факторов число опытов в факторном эксперименте: N=2k . При k=3 N=8; k=4, N=16 и т.д.

На приведенном выше рис. 3. изображен центральный (точка О – в центре) ортогональный полный факторный план эксперимента для 2-х входных факторов.

Таблица 1. Полный факторный эксперимент для k=2.

№ опыта
1 +1 +1
2 -1 +1
3 -1 -1
4 +1 -1

Свойство плана, когда, называется ортогональностью плана.

Таблица 2. Полный факторный эксперимент для k=3.

№ опыта
1 +1 +1 +1
2 -1 +1 +1
3 -1 -1 +1
4 +1 -1 +1
5 +1 +1 -1
6 -1 +1 -1
7 -1 -1 -1
8 +1 -1 -1

В полном факторном плане экспериментов число опытов резко возрастает в зависимости от числа входных факторов: k=4 N=16; k=5, N=32; k=6, N=64 опыта. Поэтому для сокращения числа опытов с минимальной потерей информации применяются сокращенные планы – дробные реплики. Если планы содержат половину опытов полного факторного эксперимента, то такой план носит название полуреплики.


Таблица 3. Пример полуреплики для k=4 (ПФЭ=16)

№ опыта
1 +1 +1 +1 +1
2 +1 -1 +1 -1
3 -1 +1 +1 -1
4 -1 -1 +1 +1
5 +1 +1 -1 -1
6 +1 -1 -1 +1
7 -1 +1 -1 +1
8 -1 -1 -1 -1

Используют также ¼ реплики от полного факторного эксперимента.

Уравнение взаимосвязи входного и выходного сигналов – уравнение регрессии – записывается в виде алгебраического полинома 1-ой и 2-ой степени в следующем виде:

1-ой степени:

xвых = b0 +b1 x1 +b2 x2 ;

с учетом взаимодействия входных факторов для 2-х входных факторовx1 и x2 :

xвых = b0 + b1 x1 + b2 x2 + b12 x1 x2 .

Полином второй степени – уравнение регрессии:

Естественно, это уравнение более точно описывает взаимосвязь xвых – функции отклика – с входными факторами (сигналами) объекта.

Задача идентификации объекта управления (ОУ) методом регрессивного анализа сводится к выбору порядка математической модели – уравнения регрессии – и определению коэффициентов b0, b1 , b2 , b12 и т.д. в этом уравнении регрессии. При определении этих коэффициентов используется метод наименьших квадратов, в котором определяется наименьшая сумма отклонений в квадрате (2-ой степени) между реально полученным в эксперименте выходным сигналом и выходным сигналом, рассчитанным (предсказанным) по уравнению регрессии, т.е. ищут минимум функции:

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 356
Бесплатно скачать Контрольная работа: Идентификация объекта управления